skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 21, 2026

Title: Carbon dioxide fluxes of Arctic coastal ecosystems controlled by seasonal patterns of land‐to‐ocean connectivity
Abstract The strength of coastal Arctic Ocean CO2uptake is vulnerable to landscape‐scale changes such as hydrological intensification, changing climate, and alterations to terrestrial and aquatic biogeochemistry. Across a period of 4 yr (2019–2023) and three distinct sampling periods, we visited five coastal ecosystems of the Beaufort Sea with varying barrier island coverage to understand drivers of Arctic coastal CO2flux. The ice cover sampling period was characterized by the highest pCO2saturation and dissolved O2undersaturation. We observed a > 100μatm difference in pCO2over shallow depths (up to 2 m) at 73% of ice‐cover site visits. Notably, the geomorphology of barrier islands and channels controlled the flushing of colder Beaufort Sea waters across the systems and influenced the strength and appearance of both vertical thermohaline and pCO2stratification. The ice breakup period reflected spring freshet and was a net CO2sink during sampling, likely related to freshwater riverine dilution, CaCO3dissolution from sea ice melt, and water column algal activity. During the open water sampling period, the interaction of marine and terrestrial contributions predicted the strength of the CO2efflux, with freshwater inputs introducing higher temperatures and organic material, which increased remineralization. The capacity of these systems to act as CO2sources or sinks varies throughout the year and is largely driven by geomorphic conditions. Any spatially integrative studies of CO2flux or coastal productivity should consider the physical and biogeochemical heterogeneity of Arctic coastal ecosystems.  more » « less
Award ID(s):
2322664
PAR ID:
10629789
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
70
Issue:
8
ISSN:
0024-3590
Format(s):
Medium: X Size: p. 2175-2191
Size(s):
p. 2175-2191
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Multiple aquatic ecosystems (pond, lake, river, lagoon, and ocean) on the Arctic Coastal Plain near Utqiaġvik, Alaska, USA, were visited to determine their relative atmospheric CO2flux and how this may have changed over time. The nearshore coastal waters and large freshwater lakes were small sources of atmospheric CO2, whereas smaller waterbodies were substantial sources.pCO2was linked to dissolved organic carbon concentrations across broad spatial and temporal scales, with greater concentrations found in smaller freshwater systems (i.e., ponds and rivers). On a day‐to‐day basis, water temperatures appeared to be the strongest driver ofpCO2levels in tundra ponds, where warmer temperatures likely stimulated microbial mineralization of carbon in both aquatic and hydrologically linked terrestrial environments. Large rainfall events, which may lead to inflow of carbon‐rich groundwater into these ponds, also were associated with increased daily averagepCO2. Based on comparison to historical data, we estimate that CO2concentrations in tundra ponds have increased more than 1.8 times over the past 40 years. Quantifying CO2flux from these abundant aquatic ecosystems on the Arctic Coastal Plain and elsewhere in the high northern latitudes will likely have important implications for furthering understanding of landscape‐level and nearshore carbon dynamics in the Arctic. 
    more » « less
  2. Abstract The Arctic Ocean has turned from a perennial ice‐covered ocean into a seasonally ice‐free ocean in recent decades. Such a shift in the air‐ice‐sea interface has resulted in substantial changes in the Arctic carbon cycle and related biogeochemical processes. To quantitatively evaluate how the oceanic CO2sink responds to rapid sea ice loss and to provide a mechanistic explanation, here we examined the air‐sea CO2flux and the regional CO2sink in the western Arctic Ocean from 1994 to 2019 by two complementary approaches: observation‐based estimation and a data‐driven box model evaluation. ThepCO2observations and model results showed that summer CO2uptake significantly increased by about 1.4 ± 0.6 Tg C decade−1in the Chukchi Sea, primarily due to a longer ice‐free period, a larger open area, and an increased primary production. However, no statistically significant increase in CO2sink was found in the Canada Basin and the Beaufort Sea based on both observations and modeled results. The reduced sea ice coverage in summer in the Canada Basin and the enhanced wind speed in the Beaufort Sea potentially promoted CO2uptake, which was, however, counteracted by a rapidly decreased air‐seapCO2gradient therein. Therefore, the current and future Arctic Ocean CO2uptake trends cannot be sufficiently reflected by the air‐seapCO2gradient alone because of the sea ice variations and other environmental factors. 
    more » « less
  3. Abstract The Arctic Ocean is more susceptible to ocean acidification than other marine environments due to its weaker buffering capacity, while its cold surface water with relatively low salinity promotes atmospheric CO2uptake. We studied how sea‐ice microbial communities in the central Arctic Ocean may be affected by changes in the carbonate system expected as a consequence of ocean acidification. In a series of four experiments during late summer 2018 aboard the icebreakerOden, we addressed microbial growth, production of dissolved organic carbon (DOC) and extracellular polymeric substances (EPS), photosynthetic activity, and bacterial assemblage structure as sea‐ice microbial communities were exposed to elevated partial pressures of CO2(pCO2). We incubated intact, bottom ice‐core sections and dislodged, under‐ice algal aggregates (dominated byMelosira arctica) in separate experiments under approximately 400, 650, 1000, and 2000 μatm pCO2for 10 d under different nutrient regimes. The results indicate that the growth of sea‐ice algae and bacteria was unaffected by these higher pCO2levels, and concentrations of DOC and EPS were unaffected by a shifted inorganic C/N balance, resulting from the CO2enrichment. These central Arctic sea‐ice microbial communities thus appear to be largely insensitive to short‐term pCO2perturbations. Given the natural, seasonally driven fluctuations in the carbonate system of sea ice, its resident microorganisms may be sufficiently tolerant of large variations in pCO2and thus less vulnerable than pelagic communities to the impacts of ocean acidification, increasing the ecological importance of sea‐ice microorganisms even as the loss of Arctic sea ice continues. 
    more » « less
  4. Westergaard-Nielsen, Andreas (Ed.)
    Massive declines in sea ice cover and widespread warming seawaters across the Pacific Arctic region over the past several decades have resulted in profound shifts in marine ecosystems that have cascaded throughout all trophic levels. The Distributed Biological Observatory (DBO) provides sampling infrastructure for a latitudinal gradient of biological “hotspot” regions across the Pacific Arctic region, with eight sites spanning the northern Bering, Chukchi, and Beaufort Seas. The purpose of this study is two-fold: (a) to provide an assessment of satellite-based environmental variables for the eight DBO sites (including sea surface temperature (SST), sea ice concentration, annual sea ice persistence and the timing of sea ice breakup/formation, chlorophyll- a concentrations, primary productivity, and photosynthetically available radiation (PAR)) as well as their trends across the 2003–2020 time period; and (b) to assess the importance of sea ice presence/open water for influencing primary productivity across the region and for the eight DBO sites in particular. While we observe significant trends in SST, sea ice, and chlorophyll- a /primary productivity throughout the year, the most significant and synoptic trends for the DBO sites have been those during late summer and autumn (warming SST during October/November, later shifts in the timing of sea ice formation, and increases in chlorophyll- a /primary productivity during August/September). Those DBO sites where significant increases in annual primary productivity over the 2003–2020 time period have been observed include DBO1 in the Bering Sea (37.7 g C/m 2 /year/decade), DBO3 in the Chukchi Sea (48.0 g C/m 2 /year/decade), and DBO8 in the Beaufort Sea (38.8 g C/m 2 /year/decade). The length of the open water season explains the variance of annual primary productivity most strongly for sites DBO3 (74%), DBO4 in the Chukchi Sea (79%), and DBO6 in the Beaufort Sea (78%), with DBO3 influenced most strongly with each day of additional increased open water (3.8 g C/m 2 /year per day). These synoptic satellite-based observations across the suite of DBO sites will provide the legacy groundwork necessary to track additional and inevitable future physical and biological change across the region in response to ongoing climate warming. 
    more » « less
  5. Abstract To examine seasonal and regional variabilities in metabolic status and the coupling of net community production (NCP) and air‐sea CO2fluxes in the western Arctic Ocean, we collected underway measurements of surface O2/Ar and partial pressure of CO2(pCO2) in the summers of 2016 and 2018. With a box‐model, we demonstrate that accounting for local sea ice history (in addition to wind history) is important in estimating NCP from biological oxygen saturation (Δ(O2/Ar)) in polar regions. Incorporating this sea ice history correction, we found that most of the western Arctic exhibited positive Δ(O2/Ar) and negativepCO2saturation, Δ(pCO2), indicative of net autotrophy but with the relationship between the two parameters varying regionally. In the heavy ice‐covered areas, where air‐sea gas exchange was suppressed, even minor NCP resulted in relatively high Δ(O2/Ar) and lowpCO2in water due to limited gas exchange. Within the marginal ice zone, NCP and CO2flux magnitudes were strongly inversely correlated, suggesting an air to sea CO2flux induced primarily by biological CO2removal from surface waters. Within ice‐free waters, the coupling of NCP and CO2flux varied according to nutrient supply. In the oligotrophic Canada Basin, NCP and CO2flux were both small, controlled mainly by air‐sea gas exchange. On the nutrient‐rich Chukchi Shelf, NCP was strong, resulting in great O2release and CO2uptake. This regional overview of NCP and CO2flux in the western Arctic Ocean, in its various stages of ice‐melt and nutrient status, provides useful insight into the possible biogeochemical evolution of rapidly changing polar oceans. 
    more » « less