Metastasis, the leading cause of death in cancer patients, requires the invasion of tumor cells through the stroma in response to migratory cues, in part provided by the extracellular matrix (ECM). Recent advances in proteomics have led to the identification of hundreds of ECM proteins, which are more abundant in tumors relative to healthy tissue. Our goal was to develop a pipeline to easily predict which ECM proteins are more likely to have an effect on cancer invasion and metastasis. We evaluated the effect of four ECM proteins upregulated in breast tumor tissue in multiple human breast cancer cell lines in three assays. There was no linear relationship between cell adhesion to ECM proteins and ECM-driven 2D cell migration speed, persistence, or 3D invasion. We then used classifiers and partial-least squares regression analysis to identify which metrics best predicted ECM-driven 2D migration and 3D invasion responses. We find that ECM-driven 2D cell migration speed or persistence did not predict 3D invasion in response to the same cue. However, cell adhesion, and in particular cell elongation and shape irregularity, accurately predicted the magnitude of ECM-driven 2D migration and 3D invasion. Our models successfully predicted the effect of novel ECM proteins in a cell-line specific manner. Overall, our studies identify the cell morphological features that determine 3D invasion responses to individual ECM proteins. This platform will help provide insight into the functional role of ECM proteins abundant in tumor tissue and help prioritize strategies for targeting tumor-ECM interactions to treat metastasis.
more »
« less
This content will become publicly available on March 1, 2026
Durotaxis and extracellular matrix degradation promote the clustering of cancer cells
Early stages of metastasis depend on the collective behavior of cancer cells and their interaction with the extracellular matrix (ECM). Cancer cell clusters are known to exhibit higher metastatic potential than single cells. To explore clustering dynamics, we developed a calibrated computational model describing how motile cancer cells biochemically and biomechanically interact with the ECM during the initial invasion phase, including ECM degradation and mechanical remodeling. The model reveals that cluster formation time, size, and shape are influenced by ECM degradation rates and cellular compliance to external stresses (durotaxis). The results align with experimental observations, demonstrating distinct cell trajectories and cluster morphologies shaped by biomechanical parameters. The simulations provide valuable insights into cancer invasion dynamics and may suggest potential therapeutic strategies targeting early-stage invasive cells.
more »
« less
- PAR ID:
- 10629865
- Publisher / Repository:
- Cell Press
- Date Published:
- Journal Name:
- iScience
- Volume:
- 28
- Issue:
- 3
- ISSN:
- 2589-0042
- Page Range / eLocation ID:
- 111883
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundTumour progression relies on the ability of cancer cells to penetrate and invade neighbouring tissues. E-cadherin loss is associated with increased cell invasion in gastric carcinoma, and germline mutations of the E-cadherin gene are causative of hereditary diffuse gastric cancer. Although E-cadherin dysfunction impacts cell–cell adhesion, cell dissemination also requires an imbalance of adhesion to the extracellular matrix (ECM). MethodsTo identify ECM components and receptors relevant for adhesion of E-cadherin dysfunctional cells, we implemented a novel ECM microarray platform coupled with molecular interaction networks. The functional role of putative candidates was determined by combining micropattern traction microscopy, protein modulation and in vivo approaches, as well as transcriptomic data of 262 gastric carcinoma samples, retrieved from the cancer genome atlas (TCGA). ResultsHere, we show that E-cadherin mutations induce an abnormal interplay of cells with specific components of the ECM, which encompasses increased traction forces and Integrin β1 activation. Integrin β1 synergizes with E-cadherin dysfunction, promoting cell scattering and invasion. The significance of the E-cadherin-Integrin β1 crosstalk was validated inDrosophilamodels and found to be consistent with evidence from human gastric carcinomas, where increased tumour grade and poor survival are associated with low E-cadherin and high Integrin β1 levels. ConclusionsIntegrin β1 is a key mediator of invasion in carcinomas with E-cadherin impairment and should be regarded as a biomarker of poor prognosis in gastric cancer.more » « less
-
null (Ed.)Hyaluronic acid (HA) is a natural polysaccharide and a key component of the extracellular matrix (ECM) in many tissues. Therefore, HA-based biomaterials are extensively utilized to create three dimensional ECM mimics to study cell behaviors in vitro . Specifically, derivatives of HA have been commonly used to fabricate hydrogels with controllable properties. In this review, we discuss the various chemistries employed to fabricate HA-based hydrogels as a tunable matrix to mimic the cancer microenvironment and subsequently study cancer cell behaviors in vitro . These include Michael-addition reactions, photo-crosslinking, carbodiimide chemistry, and Diels–Alder chemistry. The utility of these HA-based hydrogels to examine cancer cell behaviors such as proliferation, migration, and invasion in vitro in various types of cancer are highlighted. Overall, such hydrogels provide a biomimetic material-based platform to probe cell-matrix interactions in cancer cells in vitro and study the mechanisms associated with cancer progression.more » « less
-
Contact guidance is a major physical cue that modulates cancer cell morphology and motility, and is directly linked to the prognosis of cancer patients. Under physiological conditions, particularly in the three-dimensional (3D) extracellular matrix (ECM), the disordered assembly of fibers presents a complex directional bias to the cells. It is unclear how cancer cells respond to these noncoherent contact guidance cues. Here we combine quantitative experiments, theoretical analysis, and computational modeling to study the morphological and migrational responses of breast cancer cells to 3D collagen ECM with varying degrees of fiber alignment. We quantify the strength of contact guidance using directional coherence of ECM fibers, and find that stronger contact guidance causes cells to polarize more strongly along the principal direction of the fibers. Interestingly, sensitivity to contact guidance is positively correlated with cell aspect ratio, with elongated cells responding more strongly to ECM alignment than rounded cells. Both experiments and simulations show that cell–ECM adhesions and actomyosin contractility modulate cell responses to contact guidance by inducing a population shift between rounded and elongated cells. We also find that cells rapidly change their morphology when navigating the ECM, and that ECM fiber coherence modulates cell transition rates between different morphological phenotypes. Taken together, we find that subcellular processes that integrate conflicting mechanical cues determine cell morphology, which predicts the polarization and migration dynamics of cancer cells in 3D ECM.more » « less
-
Abstract Cell shape is linked to cell function. The significance of cell morphodynamics, namely the temporal fluctuation of cell shape, is much less understood. Here we study the morphodynamics of MDA-MB-231 cells in type I collagen extracellular matrix (ECM). We systematically vary ECM physical properties by tuning collagen concentrations, alignment, and gelation temperatures. We find that morphodynamics of 3D migrating cells are externally controlled by ECM mechanics and internally modulated by Rho/ROCK-signaling. We employ machine learning to classify cell shape into four different morphological phenotypes, each corresponding to a distinct migration mode. As a result, we map cell morphodynamics at mesoscale into the temporal evolution of morphological phenotypes. We characterize the mesoscale dynamics including occurrence probability, dwell time and transition matrix at varying ECM conditions, which demonstrate the complex phenotype landscape and optimal pathways for phenotype transitions. In light of the mesoscale dynamics, we show that 3D cancer cell motility is a hidden Markov process whereby the step size distributions of cell migration are coupled with simultaneous cell morphodynamics. Morphological phenotype transitions also facilitate cancer cells to navigate non-uniform ECM such as traversing the interface between matrices of two distinct microstructures. In conclusion, we demonstrate that 3D migrating cancer cells exhibit rich morphodynamics that is controlled by ECM mechanics, Rho/ROCK-signaling, and regulate cell motility. Our results pave the way to the functional understanding and mechanical programming of cell morphodynamics as a route to predict and control 3D cell motility.more » « less
An official website of the United States government
