skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Surface ligand networking promotes intersystem crossing in the Au 18 (SR) 14 nanocluster
The excited state behavior of Au18(SR)14nanoclusters can be controlled by tailoring the surface ligands; specifically, the aromatic ligands’ networking can promote the intersystem crossing in Au18(SR)14compared to the case of non-aromatic ligands.  more » « less
Award ID(s):
2419539
PAR ID:
10629909
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Nanoscale Horizons
ISSN:
2055-6756
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The most characteristic feature of planar π-aromatics is the ability to sustain a long-range shielding cone under a magnetic field oriented in a specific direction. In this article, we showed that similar magnetic responses can be found in σ-aromatic and spherical aromatic systems. For [Au 13 ] 5+ , long-range characteristics of the induced magnetic field in the bare icosahedral core are revealed, which are also found in the ligand protected [Au 25 (SH) 18 ] − model, proving its spherical aromatic properties, also supported by the AdNDP analysis. Such properties are given by the 8-ve of the structural core satisfying the Hirsch 2( N + 1) 2 rule, which is also found in the isoelectronic [M@Au 12 ] 4+ core, a part of the [MAu 24 (SR) 18 ] 2− (M = Pd, Pt) cluster. This contrasts with the [M@Au 12 ] 6+ core in [MAu 24 (SR) 18 ] 0 (M = Pd, Pt), representing 6-ve superatoms, which exhibit characteristics of planar σ-aromatics. Our results support the spherical aromatic character of stable superatoms, whereas the 6-ve intermediate electron counts satisfy the 4 N + 2 rule (applicable for both π- and σ-aromatics), showing the reversable and controlled interplay between 3D spherical and 2D σ-aromatic clusters. 
    more » « less
  2. Abstract The crystal structures of 4 ligand‐rotational isomers of Au25(PET)18are presented. Two new ligand‐rotational isomers are revealed, and two higher‐quality structures (allowing complete solution of the ligand shell) of previously solved Au25(PET)18clusters are also presented. One of the structures lacks an inversion center, making it the first chiral Au25(SR)18structure solved. These structures combined with previously published Au25(SR)18structures enable an analysis of the empirical ligand conformation landscape for Au25(SR)18clusters. This analysis shows that the dihedral angles within the PET ligand are restricted to certain observable values, and also that the dihedral angle values are interdependent, in a manner reminiscent of biomolecule dihedral angles such as those in proteins and DNA. The influence of ligand conformational isomerism on optical and electronic properties was calculated, revealing that the ligand conformations affect the nanocluster absorption spectrum, which potentially provides a way to distinguish between isomers at low temperature. 
    more » « less
  3. Developments in nanotechnology have made the creation of functionalized materials with atomic precision possible. Thiolate-protected gold nanoclusters, in particular, have become the focus of study in literature as they possess high stability and have tunable structure–property relationships. In addition to adjustments in properties due to differences in size and shape, heteroatom doping has become an exciting way to tune the properties of these systems by mixing different atomic d characters from transition metal atoms. Au 24 Pt(SR) 18 clusters, notably, have shown incredible catalytic properties, but fall short in the field of photochemistry. The influence of the Pt dopant on the photoluminescence mechanism and excited state dynamics has been investigated by a few experimental groups, but the origin of the differences that arise due to doping has not been clarified thoroughly. In this paper, density functional theory methods are used to analyze the geometry, optical and photoluminescent properties of Au 24 Pt(SR) 18 in comparison with those of [Au 25 (SR) 18 ] 1− . Furthermore, as these clusters have shown slightly different geometric and optical properties for different ligands, the analysis is completed with both hydrogen and propyl ligands in order to ascertain the role of the passivating ligands. 
    more » « less
  4. Abstract Gold nanoparticles (AuNPs) synthesized in the 1–3 nm range have a specific number of gold core atoms and outer protecting ligands. They have become one of the “hot topics” in recent decades because of their interesting physical and chemical properties. The characterization of their structures is usually achieved by crystal X‐ray diffraction although the structures of some AuNPs remain unknown because they have not been successfully crystallized. An alternative method for studying the structure of AuNPs is electrospray ionization–ion mobility–tandem mass spectrometry (ESI‐IM‐MSMS). This research evaluated how effectively ESI‐IM‐MSMS using the commercially available Waters Synapt XS instrument yielded useful structural information from two AuNPs; Au23(S‐tBu)16and Au30(S‐tBu)18. The study used the maximum range of available collision energies along with ion mobility separation to measure the energy‐dependence of the product ions and their drift times which is a measure of their spatial size. For Au23(S‐tBu)16, the dissociation gave the masses of the outer protecting monomeric [RS–Au–SR] and trimeric [SR–Au–SR–Au–SR–Au–SR] staples where R = tBu, and complete dissociation of the outer layer Au andtBu groups to reveal the Au15S8core. For Au30(S‐tBu)18, the dissociation products was primarily through the loss of the partial ligands S‐tBu andtBu from the outer protecting layer and the loss of single Au4(S‐tBu)4unit. These results showed the that ESI‐IM‐MSMS analysis of the smaller Au23(S‐tBu)16gave information on all it major structural components whereas for Au30(S‐tBu)18, the overall structural information was limited to the ligands of the outer layer. 
    more » « less
  5. Understanding the critical roles of ligands ( e.g. thiolates, SR) in the formation of metal nanoclusters of specific sizes has long been an intriguing task since the report of ligand exchange-induced transformation of Au 38 (SR) 24 into Au 36 (SR′) 24 . Herein, we conduct a systematic study of ligand exchange on Au 38 (SC 2 H 4 Ph) 24 with 21 incoming thiols and reveal that the size/structure preference is dependent on the substituent site. Specifically, ortho -substituted benzenethiols preserve the structure of Au 38 (SR) 24 , while para - or non-substituted benzenethiols cause its transformation into Au 36 (SR) 24 . Strong electron-donating or -withdrawing groups do not make a difference, but they will inhibit full ligand exchange. Moreover, the crystal structure of Au 38 (SR) 24 (SR = 2,4-dimethylbenzenethiolate) exhibits distinctive π⋯π stacking and “anagostic” interactions (indicated by substantially short Au⋯H distances). Theoretical calculations reveal the increased energies of frontier orbitals for aromatic ligand-protected Au 38 , indicating decreased electronic stability. However, this adverse effect could be compensated for by the Au⋯H–C interactions, which improve the geometric stability when ortho -substituted benzenethiols are used. Overall, this work reveals the substituent site effects based on the Au 38 model, and highlights the long-neglected “anagostic” interactions on the surface of Au-SR NCs which improve the structural stability. 
    more » « less