skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neuroengineering approaches assessing structural and functional changes of motor descending pathways in stroke
Abstract Stroke is a leading cause of adult disability worldwide, with approximately 101 million survivors globally. Over 60% of these individuals live with from long-term, often lifelong, movement impairments that significantly hinder their ability to perform essential daily activities and maintain independence. Post-stroke movement disabilities are highly associated with structural and functional changes in motor descending pathways, particularly the corticospinal tract (CST) and other indirect motor pathways via the brainstem. For decades, neuroengineers have been working to quantitively evaluate the post-stroke changes of motor descending pathways, aiming to establish a precision prognosis and tailoring treatments to post-stroke motor impairment. However, a clear and practicable technique has not yet been established as a breakthrough to change the standard of care for current clinical practice. In this review, we outline recent progress in neuroimaging, neuromodulation, and electrophysiological approaches for assessing structural and functional changes of motor descending pathways in stroke. We also discuss their limitations and challenges, arguing the need of artificial intelligence and large multi-modal data registry for a groundbreaking advance to this important topic.  more » « less
Award ID(s):
2401215
PAR ID:
10629926
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Progress in Biomedical Engineering
ISSN:
2516-1091
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The corticospinal (CST) and corticoreticulospinal (CReST) tracts are two major descending motor pathways. We examined their relationships to motor behaviors in paretic arm and hand muscles in chronic stroke. Stronger ipsilesional CST projections related to better motor control, whereas stronger contralesional CReST projections related to better muscle strength. Stronger CST projections are also uniquely related to better biceps individuation. These findings support the notion of specialized but complementary contributions of these pathways to human motor function. 
    more » « less
  2. null (Ed.)
    Individuals post stroke experience motor impair- ments, such as loss of independent joint control, weakness, and delayed movement initiation, leading to an overall reduction in arm function. Their motion becomes slower and more discoordinated, making it difficult to complete timing- sensitive tasks, such as balancing a glass of water or carrying a bowl with a ball inside it. Understanding how the stroke- induced motor impairments interact with each other can help design assisted training regimens for improved recovery. In this study, we investigate the effects of abnormal joint coupling patterns induced by flexion synergy on timing-sensitive motor coordination in the paretic upper limb. We design a virtual ball-in-bowl task that requires fast movements for optimal performance and implement it on a robotic system, capable of providing varying levels of abduction loading at the shoulder. We recruit 12 participants (6 individuals with chronic stroke and 6 unimpaired controls) and assess their skill at the task at 3 levels of loading, defined by the vertical force applied at the robot end-effector. Our results show that, for individuals with stroke, loading has a significant effect on their ability to generate quick coordinated motion. With increases in loading, their overall task performance decreases and they are less able to compensate for ball dynamics—frequency analysis of their motion indicates that abduction loading weakens their ability to generate movements at the resonant frequency of the dynamic task. This effect is likely due to an increased reliance on lower resolution indirect motor pathways in individuals post stroke. Given the inter-dependency of loading and dynamic task performance, we can create targeted robot-aided training protocols focused on improving timing-sensitive motor control, similar to existing progressive loading therapies, which have shown efficacy for expanding reachable workspace post stroke. 
    more » « less
  3. High-definition transcranial direct current stimulation (HD-tDCS) is a promising approach for stroke rehabilitation, which may induce functional changes in the cortical sensorimotor areas to facilitate movement recovery. However, it lacks an objective measure that can indicate the effect of HD-tDCS on alteration of brain activity. Quantitative electroencephalography (qEEG) has shown promising results as an indicator of post-stroke functional recovery. Therefore, this study aims to determine whether qEEG metrics could serve as quantitative measures to assess alteration in brain activity induced by HD-tDCS. Resting state EEG was collected from stroke participants before and after (1) anodal HD-tDCS of the lesioned hemisphere, (2) cathodal stimulation of the non-lesioned hemisphere, and (3) sham. The average power spectrum was calculated using the Fast Fourier Transform for frequency bands alpha, beta, delta, and theta. In addition, delta-alpha ratio (DAR), Delta-alpha-beta-theta ratio (DTABR), and directional brain symmetry index (BSI) were also evaluated. We found that both anodal and cathodal stimulation significantly decreased the DAR and BSI over various frequency bands, which are associated with reduced motor impairments and improved nerve conduction velocity from the brain to muscles. This result indicates that qEEG metrics DAR and BSI could be quantitative indicators to assess alteration of brain activity induced by HD-tDCS in stroke rehabilitation. This would allow future development of EEG-based neurofeedback system to guide and evaluate the effect of HD-tDCS on improving movement-related brain function in stroke. 
    more » « less
  4. Abstract Sensory information is critical for motor coordination. However, understanding sensorimotor integration is complicated, especially in individuals with impairment due to injury to the central nervous system. This research presents a novel functional biomarker, based on a nonlinear network graph of muscle connectivity, called InfoMuNet, to quantify the role of sensory information on motor performance. Thirty-two individuals with post-stroke hemiparesis performed a grasp-and-lift task, while their muscle activity from 8 muscles in each arm was measured using surface electromyography. Subjects performed the task with their affected hand before and after sensory exposure to the task performed with the less-affected hand. For the first time, this work shows that InfoMuNet robustly quantifies changes in functional muscle connectivity in the affected hand after exposure to sensory information from the less-affected side. > 90% of the subjects conformed with the improvement resulting from this sensory exposure. InfoMuNet also shows high sensitivity to tactile, kinesthetic, and visual input alterations at the subject level, highlighting its potential use in precision rehabilitation interventions. 
    more » « less
  5. Motor systems in animals are highly dependent on sensory information for optimal control and precision, with mechanosensory feedback from the somatosensory system playing a critical role. These mechanosensory pathways are woven into the descending feedforward pathways and local central pattern generator circuits that control and generate movement, respectively. Somatosensory feedback in mammals and insects, the two animal classes this review touches upon, is complex due to the increased demands that limbed locomotion, weight-bearing, and corrective movements place on sensorimotor control. In this review, we outline the salient features of the proprioceptive and exteroceptive sensory feedback pathways animals rely on for controlling movement and highlight some of the key principles of sensory feedback that are shared across the animal kingdom. 
    more » « less