skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: Metallic messengers from the cosmos: Rare (Al,Cu)‐bearing meteorites from the Project Stardust collection
Abstract We report the discovery of (Al,Cu)‐bearing metallic alloys in two micrometeorites found in the Project Stardust collection gathered from urban rooftop environments in Norway. Most of the alloys are the same as those found in the Khatyrka meteorite and other micrometeorites, though one has a composition that has not been reported previously. Oxygen isotope ratio measurements using secondary ion mass spectrometry show that the Project Stardust samples reported here, like all earlier examples of natural (Al,Cu)‐bearing alloys, contain material of chondritic affinity.  more » « less
Award ID(s):
2444631
PAR ID:
10630156
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
The Meteoritical Society
Date Published:
Journal Name:
Meteoritics & Planetary Science
Volume:
60
Issue:
7
ISSN:
1086-9379
Page Range / eLocation ID:
1609 to 1620
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The authors recently reported that undercooled liquid Ag and Ag–Cu alloys both exhibit a first order phase transition from the homogeneous liquid (L-phase) to a heterogeneous solid-like G-phase under isothermal evolution. Here, we report a similar L–G transition and heterogenous G-phase in simulations of liquid Cu–Zr bulk glass. The thermodynamic description and kinetic features (viscosity) of the L-G-phase transition in Cu–Zr simulations suggest it corresponds to experimentally reported liquid–liquid phase transitions in Vitreloy 1 (Vit1) and other Cu–Zr-bearing bulk glass forming alloys. The Cu–Zr G-phase has icosahedrally ordered cores versus fcc/hcp core structures in Ag and Ag–Cu with a notably smaller heterogeneity length scale Λ . We propose the L–G transition is a phenomenon in metallic liquids associated with the emergence of elastic rigidity. The heterogeneous core–shell nano-composite structure likely results from accommodating strain mismatch of stiff core regions by more compliant intervening liquid-like medium. 
    more » « less
  2. Icosahedral quasicrystals (i-phases) in the Al–Cu–Fe system are of great interest because of their perfect quasicrystalline structure and natural occurrences in the Khatyrka meteorite. The natural quasicrystal of composition Al 62 Cu 31 Fe 7 , referred to as i-phase II, is unique because it deviates significantly from the stability field of i-phase and has not been synthesized in a laboratory setting to date. Synthetic i-phases formed in shock-recovery experiments present a novel strategy for exploring the stability of new quasicrystal compositions and prove the impact origin of natural quasicrystals. In this study, an Al–Cu–W graded density impactor (GDI, originally manufactured as a ramp-generating impactor but here used as a target) disk was shocked to sample a full range of Al/Cu starting ratios in an Fe-bearing 304 stainless-steel target chamber. In a strongly deformed region of the recovered sample, reactions between the GDI and the steel produced an assemblage of co-existing Al 61.5 Cu 30.3 Fe 6.8 Cr 1.4 i-phase II + stolperite (β, AlCu) + khatyrkite (θ, Al 2 Cu), an exact match to the natural i-phase II assemblage in the meteorite. In a second experiment, the continuous interface between the GDI and steel formed another more Fe-rich quinary i-phase (Al 68.6 Fe 14.5 Cu 11.2 Cr 4 Ni 1.8 ), together with stolperite and hollisterite (λ, Al 13 Fe 4 ), which is the expected assemblage at phase equilibrium. This study is the first laboratory reproduction of i-phase II with its natural assemblage. It suggests that the field of thermodynamically stable icosahedrite (Al 63 Cu 24 Fe 13 ) could separate into two disconnected fields under shock pressure above 20 GPa, leading to the co-existence of Fe-rich and Fe-poor i-phases like the case in Khatyrka. In light of this, shock-recovery experiments do indeed offer an efficient method of constraining the impact conditions recorded by quasicrystal-bearing meteorite, and exploring formation conditions and mechanisms leading to quasicrystals. 
    more » « less
  3. The mechanical properties of materials are fundamentally determined by the behavior of atomic bonds under stress. Probing bond behavior during deformation, however, is highly challenging, particularly for materials with complex chemical compositions and/or atomic structures, such as metallic glasses (MGs). As a result, a significant gap exists in the current understanding of the mechanical properties of MGs in relation to the atomic bond behavior and how this relationship is influenced by metallurgical factors (e.g., alloy composition, processing conditions). Here, we present our study of the compositional effects on the tensile behavior of atomic bonds in Cu93−xZrxAl7 (x = 40, 50, 60 at.%) MGs using large-scale molecular dynamics (MD) simulations and statistical analysis. Specifically, we examine the populations (fractions), mean bond lengths, mean bond z-lengths, and mean bond z-strains of the different bond types before and during tensile loading (in the z-direction), and we compare these quantities across the different alloy compositions. Among our key findings, we show that increasing the Zr content in the alloy composition leads to shortened Zr-Zr, Al-Cu, Al-Zr, and Cu-Zr bonds and elongated Cu-Cu bonds, as evidenced by their mean bond lengths. During deformation, the shorter Zr-Zr bonds and longer Cu-Cu bonds in the higher-Zr-content alloys, compared with those in the x = 40 alloy, appear stronger (more elastic stretching in the z-direction) and weaker (less z-stretching), respectively, consistent with general expectations. In contrast, the Al-Cu, Al-Zr, and Cu-Zr bonds in the higher-Zr-content alloys appear weaker in the elastic regime, despite their shortened mean bond lengths. This apparent paradox can be reconciled by considering the fractions of these bonds associated with icosahedral clusters, which are known to be more resistant to deformation than the rest of the glassy structure. We also discuss how the compositional effects on the bond behavior relate to variations in the overall stress–strain behavior of the different alloys. 
    more » « less
  4. Abstract The role of interfaces and the controlling synthesis parameters of graded dealloyed nanoporous metallic materials are investigated, focusing on the dealloying front progression in complex precursor materials with multiple alloy compositions. Specifically, the effects of relative density and chemical potential on the dealloying front in sputtered bilayer copper alloy films are explored with two case studies: Cu–Al/Cu–Al and Cu–Al/Cu–Zn. Cross-sectional scanning electron (SEM) micrographs and energy-dispersive X-ray spectroscopy mapping trace the dealloying front across three time intervals, while top-surface and cross-sectional SEM probes the final dealloyed foam morphology. Final ligament sizes were found to be independent of the synthesis parameters (21–28 nm), due to a combination of fast reaction times and phosphate-inhibited surface diffusion of Cu atoms. The chemical potential gradient yielded faster reaction times, whereas slower reaction times and a higher at.% of Cu in the top layer of precursor material produced a more uniform morphology. Graphical abstract 
    more » « less
  5. Abstract Shape memory alloys (SMAs) absorb and release large amounts of latent heat during martensitic transformation, making them ideal candidates for applications involving thermal energy storage and management. In this study, Cu–Zn–Al SMAs were investigated as lower-cost alternatives to NiTi-based SMAs for solid–solid phase change materials. The alloys were fabricated using an unconventional method of melting and solidification of the constituent elements sealed in quartz tubes under a pressurized Ar atmosphere. The alloys synthesized were found to exhibit superior figure of merit values for thermal energy storage, as compared to conventional solid–liquid phase change materials and NiTi-based SMAs, with thermal conductivity between 59 and 75 W/mK and latent heat values ranging from 3 to 6.5 J/g. Transformation temperature ranges (Af–Mf) less than 20 °C were achieved within a wide operating temperature between − 145 °C and 100 °C. In addition, select CuZnAl compositions yielded excellent cyclic stability with only ± 2 °C shifts in transformation temperatures after 20 thermal cycles. The present study demonstrates the feasibility of CuZnAl SMAs for use in high heat flux thermal energy storage and management applications at a wider range of temperatures. 
    more » « less