null
(Ed.)
Abstract We study minimization of a structured objective function, being the sum of a smooth function and a composition of a weakly convex function with a linear operator. Applications include image reconstruction problems with regularizers that introduce less bias than the standard convex regularizers. We develop a variable smoothing algorithm, based on the Moreau envelope with a decreasing sequence of smoothing parameters, and prove a complexity of $${\mathcal {O}}(\epsilon ^{-3})$$ O ( ϵ - 3 ) to achieve an $$\epsilon $$ ϵ -approximate solution. This bound interpolates between the $${\mathcal {O}}(\epsilon ^{-2})$$ O ( ϵ - 2 ) bound for the smooth case and the $${\mathcal {O}}(\epsilon ^{-4})$$ O ( ϵ - 4 ) bound for the subgradient method. Our complexity bound is in line with other works that deal with structured nonsmoothness of weakly convex functions.
more »
« less
An official website of the United States government
