skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rough solutions of the relativistic Euler equations
We prove that the time of classical existence of smooth solutions to the relativistic Euler equations can be bounded from below in terms of norms that measure the “(sound) wave-part” of the data in Sobolev space and “transport-part” in higher regularity Sobolev space and Hölder spaces. The solutions are allowed to have nontrivial vorticity and entropy. We use the geometric framework from [M. M. Disconzi and J. Speck, The relativistic Euler equations: Remarkable null structures and regularity properties, Ann. Henri Poincaré 20(7) (2019) 2173–2270], where the relativistic Euler flow is decomposed into a “wave-part”, that is, geometric wave equations for the velocity components, density and enthalpy, and a “transport-part”, that is, transport-div-curl systems for the vorticity and entropy gradient. Our main result is that the Sobolev norm [Formula: see text] of the variables in the “wave-part” and the Hölder norm [Formula: see text] of the variables in the “transport-part” can be controlled in terms of initial data for short times. We note that the Sobolev norm assumption [Formula: see text] is the optimal result for the variables in the “wave-part”. Compared to low-regularity results for quasilinear wave equations and the three-dimensional (3D) non-relativistic compressible Euler equations, the main new challenge of the paper is that when controlling the acoustic geometry and bounding the wave equation energies, we must deal with the difficulty that the vorticity and entropy gradient are four-dimensional space-time vectors satisfying a space-time div-curl-transport system, where the space-time div-curl part is not elliptic. Due to lack of ellipticity, one cannot immediately rely on the approach taken in [M. M. Disconzi and J. Speck, The relativistic Euler equations: Remarkable null structures and regularity properties, Ann. Henri Poincaré 20(7) (2019) 2173–2270] to control these terms. To overcome this difficulty, we show that the space-time div-curl systems imply elliptic div-curl-transport systems on constant-time hypersurfaces plus error terms that involve favorable differentiations and contractions with respect to the four-velocity. By using these structures, we are able to adequately control the vorticity and entropy gradient with the help of energy estimates for transport equations, elliptic estimates, Schauder estimates and Littlewood–Paley theory.  more » « less
Award ID(s):
2054184
PAR ID:
10630242
Author(s) / Creator(s):
Publisher / Repository:
World Scientific
Date Published:
Journal Name:
Journal of Hyperbolic Differential Equations
Volume:
21
Issue:
02
ISSN:
0219-8916
Page Range / eLocation ID:
423 to 500
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this article, we provide notes that complement the lectures on the relativistic Euler equations and shocks that were given by the second author at the programMathematical Perspectives of Gravitation Beyond the Vacuum Regime, which was hosted by the Erwin Schrödinger International Institute for Mathematics and Physics in Vienna in February 2022. We set the stage by introducing a standard first-order formulation of the relativistic Euler equations and providing a brief overview of local well-posedness in Sobolev spaces. Then, using Riemann invariants, we provide the first detailed construction of a localized subset of the maximal globally hyperbolic developments of an open set of initially smooth, shock-forming isentropic solutions in 1D, with a focus on describing the singular boundary and the Cauchy horizon that emerges from the singularity. Next, we provide an overview of the new second-order formulation of the 3Drelativistic Euler equations derived in Disconzi and Speck (2019Ann. Henri Poincare202173–270), its rich geometric and analytic structures, their implications for the mathematical theory of shock waves, and their connection to the setup we use in our 1Danalysis of shocks. We then highlight some key prior results on the study of shock formation and related problems. Furthermore, we provide an overview of how the formulation of the flow derived in Disconzi and Speck (2019Ann. Henri Poincare202173–270) can be used to study shock formation in multiple spatial dimensions. Finally, we discuss various open problems tied to shocks. 
    more » « less
  2. Abstract We consider the patch problem for the ‐(surface quasi‐geostrophic) SQG system with the values and being the 2D Euler and the SQG equations respectively. It is well‐known that the Euler patches are globally wellposed in non‐endpoint Hölder spaces, as well as in , spaces. In stark contrast to the Euler case, we prove that for , the ‐SQG patch problem is strongly illposed ineveryHölder space with . Moreover, in a suitable range of regularity, the same strong illposedness holds foreverySobolev space unless . 
    more » « less
  3. Abstract We review some recent developments in mathematical aspects of relativistic fluids. The goal is to provide a quick entry point to some research topics of current interest that is accessible to graduate students and researchers from adjacent fields, as well as to researches working on broader aspects of relativistic fluid dynamics interested in its mathematical formalism. Instead of complete proofs, which can be found in the published literature, here we focus on the proofs’ main ideas and key concepts. After an introduction to the relativistic Euler equations, we cover the following topics: a new wave-transport formulation of the relativistic Euler equations tailored to applications; the problem of shock formation for relativistic Euler; rough (i.e., low-regularity) solutions to the relativistic Euler equations; the relativistic Euler equations with a physical vacuum boundary; relativistic fluids with viscosity. We finish with a discussion of open problems and future directions of research. 
    more » « less
  4. We prove the nonlinear stability of the asymptotic behaviour of perturbations of subfamilies of Kasner solutions in the contracting time direction within the class of polarized T 2 -symmetric solutions of the vacuum Einstein equations with arbitrary cosmological constant Λ . This stability result generalizes the results proven in Ames E et al. (2022 Stability of AVTD Behavior within the Polarized T 2 -symmetric vacuum spacetimes. Ann. Henri Poincaré . ( doi:10.1007/s00023-021-01142-0 )), which focus on the Λ = 0 case, and as in that article, the proof relies on an areal time foliation and Fuchsian techniques. Even for Λ = 0 , the results established here apply to a wider class of perturbations of Kasner solutions within the family of polarized T 2 -symmetric vacuum solutions than those considered in Ames E et al. (2022 Stability of AVTD Behavior within the Polarized T 2 -symmetric vacuum spacetimes. Ann. Henri Poincaré . ( doi:10.1007/s00023-021-01142-0 )) and Fournodavlos G et al. (2020 Stable Big Bang formation for Einstein’s equations: the complete sub-critical regime . Preprint. ( http://arxiv.org/abs/2012.05888 )). Our results establish that the areal time coordinate takes all values in ( 0 , T 0 ] for some T 0 > 0 , for certain families of polarized T 2 -symmetric solutions with cosmological constant. This article is part of the theme issue ‘The future of mathematical cosmology, Volume 1’. 
    more » « less
  5. Abstract We study the singularity formation of a quasi-exact 1D model proposed by Hou and Li (2008Commun. Pure Appl. Math.61661–97). This model is based on an approximation of the axisymmetric Navier–Stokes equations in therdirection. The solution of the 1D model can be used to construct an exact solution of the original 3D Euler and Navier–Stokes equations if the initial angular velocity, angular vorticity, and angular stream function are linear inr. This model shares many intrinsic properties similar to those of the 3D Euler and Navier–Stokes equations. It captures the competition between advection and vortex stretching as in the 1D De Gregorio (De Gregorio 1990J. Stat. Phys.591251–63; De Gregorio 1996Math. Methods Appl. Sci.191233–55) model. We show that the inviscid model with weakened advection and smooth initial data or the original 1D model with Hölder continuous data develops a self-similar blowup. We also show that the viscous model with weakened advection and smooth initial data develops a finite time blowup. To obtain sharp estimates for the nonlocal terms, we perform an exact computation for the low-frequency Fourier modes and extract damping in leading order estimates for the high-frequency modes using singularly weighted norms in the energy estimates. The analysis for the viscous case is more subtle since the viscous terms produce some instability if we just use singular weights. We establish the blowup analysis for the viscous model by carefully designing an energy norm that combines a singularly weighted energy norm and a sum of high-order Sobolev norms. 
    more » « less