skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 14, 2026

Title: Population-level phylogenomic analysis yields insights into species cohesion and population substructure of Lobelia section Lobelia (Campanulaceae)
Award ID(s):
2015594
PAR ID:
10630277
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Corporate Creator(s):
Editor(s):
na
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Molecular Phylogenetics and Evolution
ISSN:
1095-9513.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding connectivity between populations is key to identifying hotspots of diversity, dispersal sinks and sources, and effective management units for natural resources. Multi-species connectivity seeks to overcome species-specific idiosyncrasies to identify shared patterns that are most critical to spatial management. The linear Hawaiian archipelago provides an excellent platform to assess multi-species connectivity patterns, with shared boundaries to gene flow identified across a majority of the 41 coral reef species surveyed to date. Here, we evaluate genome-scale data by comparing consistency and resolution to previous connectivity studies using far fewer loci. We used pool-seq to genotype 22,503–232,730 single nucleotide polymorphisms per species (625,215 SNPs total) from the same individuals published in previous studies of two fishes, two corals, and two lobsters. Additionally, one coral species (Pocillopora meandrina) without previous archipelago-wide population genetic data was included. With greater statistical power, most genetic differences between pairwise comparisons of islands were significant (250 of 308), consistent with the most recent larval dispersal models for the Hawaiian Archipelago. These data reveal significant differentiation at a finer scale than previously reported using single-marker studies, yet did not overturn any of the conclusions or management implications drawn from previous studies. We confirm that population genomic datasets are consistent with previously reported patterns of multispecies connectivity but add a finer layer of population resolution that is pertinent to management. 
    more » « less