Abstract Degradation and loss of coral reefs due to climate change and other anthropogenic stressors has fueled genomics, proteomics, and genetics research to investigate coral stress response pathways and to identify resilient species, genotypes, and populations to restore these biodiverse ecosystems. Much of the research and conservation effort has understandably focused on the most taxonomically rich regions, such as the Great Barrier Reef in Australia and the Coral Triangle in the western Pacific. These ecosystems are analogous to tropical rainforests that also house enormous biodiversity and complex biotic interactions among different trophic levels. An alternative model ecosystem for studying coral reef biology is the relatively species poor but abundant coral reefs in the Hawaiian Archipelago that exist at the northern edge of the Indo‐Pacific coral distribution. The Hawaiian Islands are the world's most isolated archipelago, geographically isolated from other Pacific reef systems. This region houses about 80 species of scleractinian corals in three dominant genera (Porites,Montipora, andPocillopora). Here we briefly review knowledge about the Hawaiian coral fauna with a focus on our model species, the rice coralMontipora capitata. We suggest that this simpler, relatively isolated reef system provides an ideal platform for advancing coral biology and conservation using multi‐omics and genetic tools.
more »
« less
This content will become publicly available on December 1, 2026
Population Genetics to Population Genomics: Revisiting Multispecies Connectivity of the Hawaiian Archipelago
Understanding connectivity between populations is key to identifying hotspots of diversity, dispersal sinks and sources, and effective management units for natural resources. Multi-species connectivity seeks to overcome species-specific idiosyncrasies to identify shared patterns that are most critical to spatial management. The linear Hawaiian archipelago provides an excellent platform to assess multi-species connectivity patterns, with shared boundaries to gene flow identified across a majority of the 41 coral reef species surveyed to date. Here, we evaluate genome-scale data by comparing consistency and resolution to previous connectivity studies using far fewer loci. We used pool-seq to genotype 22,503–232,730 single nucleotide polymorphisms per species (625,215 SNPs total) from the same individuals published in previous studies of two fishes, two corals, and two lobsters. Additionally, one coral species (Pocillopora meandrina) without previous archipelago-wide population genetic data was included. With greater statistical power, most genetic differences between pairwise comparisons of islands were significant (250 of 308), consistent with the most recent larval dispersal models for the Hawaiian Archipelago. These data reveal significant differentiation at a finer scale than previously reported using single-marker studies, yet did not overturn any of the conclusions or management implications drawn from previous studies. We confirm that population genomic datasets are consistent with previously reported patterns of multispecies connectivity but add a finer layer of population resolution that is pertinent to management.
more »
« less
- PAR ID:
- 10659462
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Fishes
- Volume:
- 10
- Issue:
- 12
- ISSN:
- 2410-3888
- Page Range / eLocation ID:
- 623
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We conducted a population genetic analysis of the stalked kelp,Pterygophora californica, in the Santa Barbara Channel, California,USA. The results were compared with previous work on the genetic differentiation of giant kelp,Macrocystis pyrifera,in the same region. These two sympatric kelps not only share many life history and dispersal characteristics but also differ in that dislodgedP. californicadoes not produce floating rafts with buoyant fertile sporophytes, commonly observed forM. pyrifera. We used a comparative population genetic approach with these two species to test the hypothesis that the ability to produce floating rafts increases the genetic connectivity among kelp patches in the Santa Barbara Channel. We quantified the association of habitat continuity and oceanographic distance with the genetic differentiation observed in stalked kelp, like previously conducted for giant kelp. We compared both overall (across all patches) and pairwise (between patches) genetic differentiation. We found that oceanographic transit time, habitat continuity, and geographic distance were all associated with genetic connectivity inP. californica, supporting similar previous findings forM. pyrifera. Controlling for differences in heterozygosity between kelp species using Jost'sDEST, we showed that global differentiation and pairwise differentiation were similar among patches between the two kelp species, indicating that they have similar dispersal capabilities despite their differences in rafting ability. These results suggest that rafting sporophytes do not play a significant role in effective dispersal ofM. pyriferaat ecologically relevant spatial and temporal scales.more » « less
-
The banded coral shrimp, Stenopus hispidus (Crustacea: Decapoda: Stenopodidea) is a popular marine ornamental species with a circumtropical distribution. The planktonic larval stage lasts ∼120–253 days, indicating considerable dispersal potential, but few studies have investigated genetic connectivity on a global scale in marine invertebrates. To resolve patterns of divergence and phylogeography of S. hispidus , we surveyed 525 bp of mitochondrial cytochrome c oxidase subunit I (COI) from 198 individuals sampled at 10 locations across ∼27,000 km of the species range. Phylogenetic analyses reveal that S. hispidus has a Western Atlantic lineage and a widely distributed Indo-Pacific lineage, separated by sequence divergence of 2.1%. Genetic diversity is much higher in the Western Atlantic ( h = 0.929; π = 0.004) relative to the Indo-Pacific ( h = 0.105; π < 0.001), and coalescent analyses indicate that the Indo-Pacific population expanded more recently (95% HPD (highest posterior density) = 60,000–400,000 yr) than the Western Atlantic population (95% HPD = 300,000–760,000 yr). Divergence of the Western Atlantic and Pacific lineages is estimated at 710,000–1.8 million years ago, which does not readily align with commonly implicated colonization events between the ocean basins. The estimated age of populations contradicts the prevailing dispersal route for tropical marine biodiversity (Indo-Pacific to Atlantic) with the oldest and most diverse population in the Atlantic, and a recent population expansion with a single common haplotype shared throughout the vast Indian and Pacific oceans. In contrast to the circumtropical fishes, this diminutive reef shrimp challenges our understanding of conventional dispersal capabilities of marine species.more » « less
-
ABSTRACT Although patterns of population genomic variation are well‐studied in animals, there remains room for studies that focus on non‐model taxa with unique biologies. Here we characterise and attempt to explain such patterns in mygalomorph spiders, which are generally sedentary, often occur as spatially clustered demes and show remarkable longevity. Genome‐wide single nucleotide polymorphism (SNP) data were collected for 500 individuals across a phylogenetically representative sample of taxa. We inferred genetic populations within focal taxa using a phylogenetically informed clustering approach, and characterised patterns of diversity and differentiation within‐ and among these genetic populations, respectively. Using phylogenetic comparative methods we asked whether geographical range sizes and ecomorphological variables (behavioural niche and body size) significantly explain patterns of diversity and differentiation. Specifically, we predicted higher genetic diversity in genetic populations with larger geographical ranges, and in small‐bodied taxa. We also predicted greater genetic differentiation in small‐bodied taxa, and in burrowing taxa. We recovered several significant predictors of genetic diversity, but not genetic differentiation. However, we found generally high differentiation across genetic populations for all focal taxa, and a consistent signal for isolation‐by‐distance irrespective of behavioural niche or body size. We hypothesise that high population genetic structuring, likely reflecting combined dispersal limitation and microhabitat specificity, is a shared trait for all mygalomorphs. Few studies have found ubiquitous genetic structuring for an entire ancient and species‐rich animal clade.more » « less
-
The exceptionally large population size and cosmopolitan biogeographic distribution that distinguish many – but not all – marine zooplankton species generate similarly exceptional patterns of population genetic and genomic diversity and structure. The phylogenetic diversity of zooplankton has slowed the application of population genomic approaches, due to lack of genomic resources for closelyrelated species and diversity of genomic architecture, including highly-replicated genomes of many crustaceans. Use of numerous genomic markers, especially single nucleotide polymorphisms (SNPs), is transforming our ability to analyze population genetics and connectivity of marine zooplankton, and providing new understanding and different answers than earlier analyses, which typically used mitochondrial DNA and microsatellite markers. Population genomic approaches have confirmed that, despite high dispersal potential, many zooplankton species exhibit genetic structuring among geographic populations, especially at large ocean-basin scales, and have revealed patterns and pathways of population connectivity that do not always track ocean circulation. Genomic and transcriptomic resources are critically needed to allow further examination of micro-evolution and local adaptation, including identification of genes that show evidence of selection. These new tools will also enable further examination of the significance of small-scale genetic heterogeneity of marine zooplankton, to discriminate genetic “noise” in large and patchy populations from local adaptation to environmental conditions and change.more » « less
An official website of the United States government
