skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 8, 2026

Title: Trajectory-Informed versus Physics-Informed Machine Learning Methods for Dynamic Zero-Sum Games
Award ID(s):
2415479 2231651 2227185 2038589 1851588
PAR ID:
10630320
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3315-6937-2
Page Range / eLocation ID:
4903 to 4908
Format(s):
Medium: X
Location:
Denver, CO, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Accurate numerical and physical models play an important role in modeling the spread of infectious disease as well as informing policy decisions. Vaccination programs rely on the estimation of disease parameters from limited, error-prone reported data. Using physics-informed neural networks (PINNs) as universal function approximators of the susceptible-infected-recovered (SIR) compartmentalized differential equation model, we create a data-driven framework that uses reported data to estimate disease spread and approximate corresponding disease parameters. We apply this to datafrom a London boarding school, demonstrating the framework's ability to produce accurate disease and parameter estimations despite noisy data. However, real-world populations contain sub-populations, each exhibiting different levels of risk and activity. Thus, we expand our framework to model meta-populations of preferentially-mixed subgroups with various contact rates, introducing a new substitution to decrease the number of parameters. Optimal parameters are estimated throughPINNs which are then used in a negative gradient approach to calculate an optimal vaccine distribution plan for informed policy decisions. We also manipulate a new hyperparameter in the loss function of the PINNs network to expedite training. Together, our work creates a data-driven tool for future infectious disease vaccination efforts in heterogeneously mixed populations. 
    more » « less
  2. null (Ed.)
    Current model-based reinforcement learning methods struggle when operating from complex visual scenes due to their inability to prioritize task-relevant features. To mitigate this prob- lem, we propose learning Task Informed Ab- stractions (TIA) that explicitly separates reward- correlated visual features from distractors. For learning TIA, we introduce the formalism of Task Informed MDP (TiMDP) that is realized by train- ing two models that learn visual features via coop- erative reconstruction, but one model is adversari- ally dissociated from the reward signal. Empirical evaluation shows that TIA leads to significant per- formance gains over state-of-the-art methods on many visual control tasks where natural and un- constrained visual distractions pose a formidable challenge. Project page: https://xiangfu.co/tia 
    more » « less