skip to main content


Search for: All records

Award ID contains: 1851588

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary

    This article develops a data‐based and private learning framework of the detection and mitigation against replay attacks for cyber‐physical systems. Optimal watermarking signals are added to assist in the detection of potential replay attacks. In order to improve the confidentiality of the output data, we first add a level of differential privacy. We then use a data‐based technique to learn the best defending strategy in the presence of worst case disturbances, stochastic noise, and replay attacks. A data‐based Neyman‐Pearson detector design is also proposed to identify replay attacks. Finally, simulation results show the efficacy of the proposed approach along with a comparison of our data‐based technique to a model‐based one.

     
    more » « less
  2. Summary

    This article presents a novel actor‐critic‐barrier structure for the multiplayer safety‐critical systems. Non‐zero‐sum (NZS) games with full‐state constraints are first transformed into unconstrained NZS games using a barrier function. The barrier function is capable of dealing with both symmetric and asymmetric constraints on the state. It is shown that the Nash equilibrium of the unconstrained NZS guarantees to stabilize the original multiplayer system. The barrier function is combined with an actor‐critic structure to learn the Nash equilibrium solution in an online fashion. It is shown that integrating the barrier function with the actor‐critic structure guarantees that the constraints will not be violated during learning. Boundedness and stability of the closed‐loop signals are analyzed. The efficacy of the presented approach is finally demonstrated by using a simulation example.

     
    more » « less
  3. Summary

    In this paper, we develop an adaptive control algorithm for addressing security for a class of networked vehicles that comprise a formation ofhuman‐driven vehicles sharing kinematic data and an autonomous vehicle in the aft of the vehicle formation receiving data from the preceding vehicles through wireless vehicle‐to‐vehicle communication devices. Specifically, we develop an adaptive controller for mitigating time‐invariant state‐dependent adversarial sensor and actuator attacks while guaranteeing uniform ultimate boundedness of the closed‐loop networked system. Furthermore, an adaptive learning framework is presented for identifying the state space model parameters based on input‐output data. This learning technique utilizes previously stored data as well as current data to identify the system parameters using a relaxed persistence of excitation condition. The effectiveness of the proposed approach is demonstrated by an illustrative numerical example involving a platoon of connected vehicles.

     
    more » « less
  4. Summary

    This paper proposes an intermittent model‐free learning algorithm for linear time‐invariant systems, where the control policy and transmission decisions are co‐designed simultaneously while also being subjected to worst‐case disturbances. The control policy is designed by introducing an internal dynamical system to further reduce the transmission rate and provide bandwidth flexibility in cyber‐physical systems. Moreover, aQ‐learning algorithm with two actors and a single critic structure is developed to learn the optimal parameters of aQ‐function. It is shown by using an impulsive system approach that the closed‐loop system has an asymptotically stable equilibrium and that no Zeno behavior occurs. Furthermore, a qualitative performance analysis of the model‐free dynamic intermittent framework is given and shows the degree of suboptimality concerning the optimal continuous updated controller. Finally, a numerical simulation of an unknown system is carried out to highlight the efficacy of the proposed framework.

     
    more » « less
  5. Free, publicly-accessible full text available August 22, 2024
  6. Free, publicly-accessible full text available August 22, 2024
  7. Free, publicly-accessible full text available May 31, 2024
  8. Free, publicly-accessible full text available May 31, 2024
  9. Free, publicly-accessible full text available May 31, 2024
  10. Free, publicly-accessible full text available May 31, 2024