skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Aperiodic defects in periodic solids
To date, computational methods for modeling defects (vacancies, adsorbates, etc.) have relied on periodic supercells in which the defect is far enough from its repeated image that they can be assumed non-interacting. Yet, the relative proximity and periodic repetition of the defect’s images may lead to spurious, unphysical artifacts, especially if the defect is charged and/or open-shell, causing a very slow convergence to the thermodynamic limit (TDL). In this article, we introduce a “defectless” embedding formalism such that the embedding field is computed in a pristine, primitive-unit-cell calculation. Subsequently, a single (i.e., “aperiodic”) defect, which can also be charged, is introduced inside the embedded fragment. By eliminating the need for compensating background charges and periodicity of the defect, we circumvent all associated unphysicalities and numerical issues, achieving a very fast convergence to the TDL. Furthermore, using the toolbox of post-Hartree–Fock methods, this scheme can be straightforwardly applied to study strongly correlated defects, localized excited states, and other problems for which existing periodic protocols do not provide a satisfactory description.  more » « less
Award ID(s):
2221453
PAR ID:
10630328
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
163
Issue:
8
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study how confinement transforms the chaotic dynamics of bulk microtubule-based active nematics into regular spatiotemporal patterns. For weak confinements in disks, multiple continuously nucleating and annihilating topological defects self-organize into persistent circular flows of either handedness. Increasing confinement strength leads to the emergence of distinct dynamics, in which the slow periodic nucleation of topological defects at the boundary is superimposed onto a fast procession of a pair of defects. A defect pair migrates toward the confinement core over multiple rotation cycles, while the associated nematic director field evolves from a distinct double spiral toward a nearly circularly symmetric configuration. The collapse of the defect orbits is punctuated by another boundary-localized nucleation event, that sets up long-term doubly periodic dynamics. Comparing experimental data to a theoretical model of an active nematic reveals that theory captures the fast procession of a pair of + 1 / 2 defects, but not the slow spiral transformation nor the periodic nucleation of defect pairs. Theory also fails to predict the emergence of circular flows in the weak confinement regime. The developed confinement methods are generalized to more complex geometries, providing a robust microfluidic platform for rationally engineering 2D autonomous flows. 
    more » « less
  2. We introduce a Floquet circuit describing the driven Ising chain with topological defects. The corresponding gates include a defect that flips spins as well as the duality defect that explicitly implements the Kramers-Wannier duality transformation. The Floquet unitary evolution operator commutes with such defects, but the duality defect is not unitary, as it projects out half the states. We give two applications of these defects. One is to analyze the return amplitudes in the presence of “space-like” defects stretching around the system. We verify explicitly that the return amplitudes are in agreement with the fusion rules of the defects. The second application is to study unitary evolution in the presence of “time-like” defects that implement anti-periodic and duality-twisted boundary conditions. We show that a single unpaired localized Majorana zero mode appears in the latter case. We explicitly construct this operator, which acts as a symmetry of this Floquet circuit. We also present analytic expressions for the entanglement entropy after a single time step for a system of a few sites, for all of the above defect configurations. 
    more » « less
  3. Abstract Point defects in two-dimensional materials are of key interest for quantum information science. However, the parameter space of possible defects is immense, making the identification of high-performance quantum defects very challenging. Here, we perform high-throughput (HT) first-principles computational screening to search for promising quantum defects within WS2, which present localized levels in the band gap that can lead to bright optical transitions in the visible or telecom regime. Our computed database spans more than 700 charged defects formed through substitution on the tungsten or sulfur site. We found that sulfur substitutions enable the most promising quantum defects. We computationally identify the neutral cobalt substitution to sulfur (Co$${}_{{{{{{{{\rm{S}}}}}}}}}^{0}$$ S 0 ) and fabricate it with scanning tunneling microscopy (STM). The Co$${}_{{{{{{{{\rm{S}}}}}}}}}^{0}$$ S 0 electronic structure measured by STM agrees with first principles and showcases an attractive quantum defect. Our work shows how HT computational screening and nanoscale synthesis routes can be combined to design promising quantum defects. 
    more » « less
  4. Abstract Surface defect identification is a crucial task in many manufacturing systems, including automotive, aircraft, steel rolling, and precast concrete. Although image-based surface defect identification methods have been proposed, these methods usually have two limitations: images may lose partial information, such as depths of surface defects, and their precision is vulnerable to many factors, such as the inspection angle, light, color, noise, etc. Given that a three-dimensional (3D) point cloud can precisely represent the multidimensional structure of surface defects, we aim to detect and classify surface defects using a 3D point cloud. This has two major challenges: (i) the defects are often sparsely distributed over the surface, which makes their features prone to be hidden by the normal surface and (ii) different permutations and transformations of 3D point cloud may represent the same surface, so the proposed model needs to be permutation and transformation invariant. In this paper, a two-step surface defect identification approach is developed to investigate the defects’ patterns in 3D point cloud data. The proposed approach consists of an unsupervised method for defect detection and a multi-view deep learning model for defect classification, which can keep track of the features from both defective and non-defective regions. We prove that the proposed approach is invariant to different permutations and transformations. Two case studies are conducted for defect identification on the surfaces of synthetic aircraft fuselage and the real precast concrete specimen, respectively. The results show that our approach receives the best defect detection and classification accuracy compared with other benchmark methods. 
    more » « less
  5. Abstract The Materials Genome Initiative (MGI) has streamlined the materials discovery effort by leveraging generic traits of materials, with focus largely on perfect solids. Defects such as impurities and perturbations, however, drive many attractive functional properties of materials. The rich tapestry of charge, spin, and bonding states hosted by defects are not accessible to elements and perfect crystals, and defects can thus be viewed as another class of “elements” that lie beyond the periodic table. Accordingly, a Defect Genome Initiative (DGI) to accelerate functional defect discovery for energy, quantum information, and other applications is proposed. First, major advances made under the MGI are highlighted, followed by a delineation of pathways for accelerating the discovery and design of functional defects under the DGI. Near‐term goals for the DGI are suggested. The construction of open defect platforms and design of data‐driven functional defects, along with approaches for fabrication and characterization of defects, are discussed. The associated challenges and opportunities are considered and recent advances towards controlled introduction of functional defects at the atomic scale are reviewed. It is hoped this perspective will spur a community‐wide interest in undertaking a DGI effort in recognition of the importance of defects in enabling unique functionalities in materials. 
    more » « less