skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Linking geographic distribution and niche through estimation of niche density
Abstract The availability of suitable niche space constrains where species can occur geographically. This tie between niche space and geographic space is crucial when estimating species geographic distributions in a changing climate. However, specific combinations of climatic conditions may be overrepresented in geographic space, highlighting the potential disconnect between climatic niche area and geographic range size.We develop a niche density estimator that accounts for the geographic availability of climatic niche space, relate this to traditional estimates of niche area and explore how these niche estimates are related to species geographic range size.To do this, we use data on over 230,000 species recorded in the Global Biodiversity Information Facility, providing a thorough test of the sensitivity of niche estimation technique on geographic range size–climatic niche scaling relationships, and clarifying the link between geographic space and environmental space by considering the density of available environments in environmental space.Niche density was more strongly related to species geographic range size than niche area, highlighting the role of the geographic availability of climatic niche space in biogeographic relationships. As species geographic ranges and environmental conditions change, understanding the ecological and evolutionary determinants of this positive scaling between geographic range size and niche size is an important research frontier.  more » « less
Award ID(s):
2420769 2213878
PAR ID:
10630337
Author(s) / Creator(s):
;
Publisher / Repository:
British Ecological Society
Date Published:
Journal Name:
Journal of Animal Ecology
Volume:
94
Issue:
6
ISSN:
0021-8790
Page Range / eLocation ID:
1221 to 1230
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract How strongly predators and prey interact is both notoriously context dependent and difficult to measure. Yet across taxa, interaction strength is strongly related to predator size, prey size and prey density, suggesting that general cross‐taxonomic relationships could be used to predict how strongly individual species interact.Here, we ask how accurately do general size‐scaling relationships predict variation in interaction strength between specific species that vary in size and density across space and time?To address this question, we quantified the size and density dependence of the functional response of the California spiny lobsterPanulirus interruptus, foraging on a key ecosystem engineer, the purple sea urchinStrongylocentrotus purpuratus, in experimental mesocosms. Based on these results, we then estimated variation in lobster–urchin interaction strength across five sites and 9 years of observational data. Finally, we compared our experimental estimates to predictions based on general size‐scaling relationships from the literature.Our results reveal that predator and prey body size has the greatest effect on interaction strength when prey abundance is high. Due to consistently high urchin densities in the field, our simulations suggest that body size—relative to density—accounted for up to 87% of the spatio‐temporal variation in interaction strength. However, general size‐scaling relationships failed to predict the magnitude of interactions between lobster and urchin; even the best prediction from the literature was, on average, an order of magnitude (+18.7×) different than our experimental predictions.Harvest and climate change are driving reductions in the average body size of many marine species. Anticipating how reductions in body size will alter species interactions is critical to managing marine systems in an ecosystem context. Our results highlight the extent to which differences in size‐frequency distributions can drive dramatic variation in the strength of interactions across narrow spatial and temporal scales. Furthermore, our work suggests that species‐specific estimates for the scaling of interaction strength with body size, rather than general size‐scaling relationships, are necessary to quantitatively predict how reductions in body size will alter interaction strengths. 
    more » « less
  2. Abstract Climatic and soil features influence resources and mate availability for plants. Because of different resource/mating demands of the male and female reproductive pathways, environmental variation can drive geographic patterns of sex‐specific factors in sexually polymorphic species. Yet, the relationship between environment and sex, sexual dimorphism or sex chromosomes at the range‐wide scale is underexamined.Using ~7000 herbarium and iNaturalist specimens we generate a landscape‐scale understanding of how sex ratio and sexual dimorphism vary with geographic, climatic and soil gradients in the sexually polymorphic wild strawberry (Fragaria virginiana) and test whether these conform to predictions from theory. Then, for ~300 specimens we use genotyping of the sex‐determining region (SDR haplotypes) to reveal geographic and phenotypic patterns in sex chromosome types.Across North America, the sex ratio was hermaphrodite/male‐biased and was associated more with soil attributes than climate. Sex ratio‐environment associations matched predictions for subdioecy in the West but for gynodioecy in the East. Climatic factors correlated with sexual dimorphism in traits related to carbon acquisition (leaf size and runnering while flowering) but not mate access (petal size, flowering time). Variation in sexual dimorphism was due to one sex being more responsive to the environmental variation than the other. Specifically, leaf length in females was more responsive to variation in precipitation than in hermaphrodite/males, but the probability of runnering while flowering in hermaphrodite/males was more responsive to variation in temperature than in females. The ancestral sex chromosome type was most common overall. But the frequency of the more derived sex chromosomes varied with environmental factors that differed between East–West regions.Synthesis. A landscape‐level perspective revealed that variation in soil and climate factors can explain geospatial variation in sex ratio and sexual dimorphism in a wild strawberry. Variation in sex ratio was associated more with soil resources than climate, while variation in sexual dimorphism was the result of sex‐differential responses to climate for vegetative traits but a similar response to abiotic factors in mate access traits. Finally, sex chromosome types were associated with soil moisture and precipitation in ways that could contribute to the evolution of sex determination. 
    more » « less
  3. Abstract Droughts are increasing in frequency and severity globally due to climate change, leading to changes in resource availability that may have cascading effects on animal ecology. Resource availability is a key driver of animal space use, which in turn influences interspecific interactions like intraguild competition. Understanding how climate‐induced changes in resource availability influence animal space use, and how species‐specific responses scale up to affect intraguild dynamics, is necessary for predicting broader community‐level responses to climatic changes.Although several studies have demonstrated the ecological impacts of drought, the behavioural responses of individuals that scale up to these broader‐scale effects are not well known, particularly among animals in top trophic levels like large carnivores. Furthermore, we currently lack understanding of how the impacts of climate variability on individual carnivore behaviour are linked to intraguild dynamics, in part because multi‐species datasets collected at timescales relevant to climatic changes are rare.Using 11 years of GPS data from four sympatric large carnivore species in southern Africa—lions (Panthera leo), leopards (Panthera pardus), African wild dogs (Lycaon pictus) and cheetahs (Acinonyx jubatus)—spanning 4 severe drought events, we test whether drought conditions impact (1) large carnivore space use, (2) broad‐scale intraguild spatial overlap and (3) fine‐scale intraguild interactions.Drought conditions expanded space use across species, with carnivores increasing their monthly home range sizes by 35% (wild dogs) to 66% (leopards). Drought conditions increased the amount of spatial overlap between lions and subordinate felids (cheetahs and leopards) by up to 119%, but only lion‐cheetah encounter rates were affected by these changes, declining in response to drought.Our findings reveal that drought has a clear signature on the space use of multiple sympatric large carnivore species, which can alter spatiotemporal partitioning between competing species. Our study thereby illuminates the links between environmental change, animal behaviour and intraguild dynamics. While fine‐scale avoidance strategies may facilitate intraguild coexistence during periodic droughts, large carnivore conservation may require considerable expansion of protected areas or revised human‐carnivore coexistence strategies to accommodate the likely long‐term increased space demands of large carnivores under projected increases in drought intensity. 
    more » « less
  4. Summary Genetic load can reduce fitness and hinder adaptation. While its genetic underpinnings are well established, the influence of environmental variation on genetic load is less well characterized, as is the relationship between genetic load and putatively adaptive genetic variation. This study examines the interplay among climate, species range dynamics, adaptive variation, and mutational load – a genomic measure of genetic load – inVitis arizonica, a wild grape native to the American Southwest.We estimated mutational load and identified climate‐associated adaptive genetic variants in 162 individuals across the species' range. Using a random forest model, we analyzed the relationship between mutational load, climate, and range shifts.Our findings linked mutational load to climatic variation, historical dispersion, and heterozygosity. Populations at the leading edge of range expansion harbored higher load and fewer putatively adaptive alleles associated with climate. Climate projections suggest thatV. arizonicawill expand its range by the end of the century, accompanied by a slight increase in mutational load at the population level.This study advances understanding of how environmental and geographic factors shape genetic load and adaptation, highlighting the need to integrate deleterious variation into broader models of species response to climate change. 
    more » « less
  5. Abstract Ecological niche models (ENMs) have been used frequently to predict the distribution and future spread of the pathogenic chytrid fungusBatrachochytrium dendrobatidis(Bd). Based on the assumption that chytridiomycosis outbreaks are most likely to occur where the conditions are ideal for Bd, many studies have identified high‐risk areas for chytridiomycosis and its associated mortality risk using only known Bd occurrences. However, the presence of a pathogen does not necessarily indicate high infection, disease or associated mortality.We used the BIOMOD2 package implemented in R, 19 bioclimatic variables, and 267 locality records, covering three levels of infection progress (occurrence, high infection loads and disease‐associated mortality), to calculate the potential areas where: (1) Bd is likely to be present, (2) amphibians are prone to harbour high infections and (3) chytridiomycosis‐related mortalities are likely to occur. We evaluate discrepancies among the three potential areas projected by the models, encompassing their spatial extent and associated environmental conditions.When all the Bd occurrences were used, the predicted area subjected to Bd risk covered 17% of the study area. However, when just mortality records were used, the predicted area decreased three‐fold. Notably, the three predicted areas only overlapped in 3% of the total study area, suggesting that the region at risk of mortality plus high infections constituted only one‐fifth of the predicted area for Bd presence. Mean temperature during the wettest and warmest 3 months of the year together with isothermality emerged as the most robust negative predictors in each of the three models.Synthesis and applications. Ecological niche models (ENMs) based on the presence data ofBatrachochytrium dendrobatidis(Bd) can overestimate the mortality risk of chytridiomycosis because the environmental conditions suitable for Bd presence do not always correspond to those conducive to significant host mortality. Distribution modelling can be a powerful tool when used correctly, and this study highlights the significance of careful data selection to ensure alignment with intended objectives. Considering the widespread use of ENMs to inform policy, meticulous design and comprehensive evaluation are imperative. 
    more » « less