The existence of patterns in population dynamics across species geographic ranges and climatic niches is a pervasive idea in ecology. Population variability (i.e. temporal variability in population density) should hypothetically increase near range edges or niche limits because of less suitable environments in these areas, but the occurrence of such patterns remains largely unexplored. Further, fluctuations in temperature could pose demographic constraints on populations and also influence their variability. We used Breeding Bird Survey data to show that the population variability of 97 resident North American birds consistently increases towards their niche limits and in areas with more variable temperatures, but not towards their geographic range edges. However, our model has limited explanatory power, and phylogenetic history and species traits could not explain these results. These findings suggest that other factors, such as biotic interactions and resource availability, might be more important drivers of population variability in resident North American birds.
more »
« less
This content will become publicly available on January 1, 2026
Population variability across geographical ranges: perspectives and challenges
Populations fluctuate over time and across geographical space, and understanding how different factors contribute to population variability is a central goal in population ecology. There is a particular interest in identifying trends of population variability within geographical ranges as population densities of species can fluctuate substantially across geographical space. A common assumption is that populations vary more near species geographical range edges because of unsuitable environments and higher vulnerability to environmental variability in these areas. However, empirical data rarely support this expectation, suggesting that population variability is not related to its position within species geographical ranges. We propose that performance curves, which describe the relationship between population growth rates and environmental conditions, can be used to disentangle geographical patterns of population variability. Performance curves are important for understanding population variability because populations fluctuate more in locations where they have lower growth rates owing to unsuitable environmental conditions. This is important for the assessment of these geographical patterns in population variability because geographical edges often do not reflect environmental edges. Considering species performance curves when evaluating geographical patterns of population variability would also allow researchers to detect populations that are more susceptible to future changes in environmental conditions.
more »
« less
- PAR ID:
- 10630339
- Publisher / Repository:
- The Royal Society
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 292
- Issue:
- 2039
- ISSN:
- 1471-2954
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Demographic responses of hybridizing cinquefoils to changing climate in the Colorado Rocky MountainsAbstract Hybridization between taxa generates new pools of genetic variation that can lead to different environmental responses and demographic trajectories over time than seen in parental lineages. The potential for hybrids to have novel environmental tolerances may be increasingly important in mountainous regions, which are rapidly warming and drying due to climate change. Demographic analysis makes it possible to quantify within‐ and among‐species responses to variation in climate and to predict population growth rates as those conditions change. We estimated vital rates and population growth in 13 natural populations of two cinquefoil taxa (Potentilla hippianaandP. pulcherrima) and their hybrid across elevation gradients in the Southern Rockies. Using three consecutive years of environmental and demographic data, we compared the demographic responses of hybrid and parental taxa to environmental variation across space and time. All three taxa had lower predicted population growth rates under warm, dry conditions. However, the magnitude of these responses varied among taxa and populations. Hybrids had consistently lower predicted population growth rates thanP. hippiana. In contrast, hybrid performance relative toP. pulcherrimavaried with population and climate, with the hybrid maintaining relatively stable growth rates while populations ofP. pulcherrimashrank under warm, dry conditions. Our findings demonstrate that hybrids in this system are neither intrinsically unfit nor universally more vigorous than parents, suggesting that the demographic consequences of hybridization are context‐dependent. Our results also imply that shifts to warmer and drier conditions could have particularly negative repercussions forP. pulcherrima, which is currently the most abundant taxon in the study area, possibly as a legacy of more favorable historical climates. More broadly, the distributions of these long‐lived taxa are lagging behind their demographic trajectories, such that the currently less commonP. hippianacould become the most abundant of thePotentillataxa as this region continues to warm and dry.more » « less
-
Abstract Populations and communities fluctuate in their overall numbers through time, and the magnitude of fluctuations in individual species may scale to communities. However, the composite variability at the community scale is expected to be tempered by opposing fluctuations in individual populations, a phenomenon often called theportfolio effect. Understanding population variability, how it scales to community variability, and the spatial scaling in this variability are pressing needs given shifting environmental conditions and community composition. We explore evidence for portfolio effects using null community simulations and a large collection of empirical community time series from the BioTIME database. Additionally, we explore the relative roles of habitat type and geographic location on population and community temporal variability. We find strong portfolio effects in our theoretical community model, but weak effects in empirical data, suggesting a role for shared environmental responses, interspecific competition, or a litany of other factors. Furthermore, we observe a clear latitudinal signal – and differences among habitat types – in population and community variability. Together, this highlights the need to develop realistic models of community dynamics, and hints at spatial, and underlying environmental, gradients in variability in both population and community dynamics.more » « less
-
Populations of forest trees exhibit large temporal fluctuations, but little is known about the synchrony of these fluctuations across space, including their sign, magnitude, causes and characteristic scales. These have important implications for metapopulation persistence and theoretical community ecology. Using data from permanent forest plots spanning local, regional and global spatial scales, we measured spatial synchrony in tree population growth rates over sub-decadal and decadal timescales and explored the relationship of synchrony to geographical distance. Synchrony was high at local scales of less than 1 km, with estimated Pearson correlations of approximately 0.6–0.8 between species’ population growth rates across pairs of quadrats. Synchrony decayed by approximately 17–44% with each order of magnitude increase in distance but was still detectably positive at distances of 100 km and beyond. Dispersal cannot explain observed large-scale synchrony because typical seed dispersal distances (<100 m) are far too short to couple the dynamics of distant forests on decadal timescales. We attribute the observed synchrony in forest dynamics primarily to the effect of spatially synchronous environmental drivers (the Moran effect), in particular climate, although pests, pathogens and anthropogenic drivers may play a role for some species.more » « less
-
Marine species worldwide are responding to ocean warming by shifting their ranges to new latitudes and, for intertidal species, elevations. Demographic traits can vary across populations spanning latitudinal and elevational ranges, with impacts on population growth. Understanding how demography varies across gradients from range center to edge could help us predict future shifts, species assemblages, and extinction risks. We investigated demographic traits for 2 range-expanding whelk species:Acanthinucella spirataandMexacanthina lugubris.We measured reproductive output across environmental (latitudinal and shore elevation) gradients along the coast of California, USA. We also conducted intensive measurements of offspring condition (survival and thermal tolerance) across shore elevation forM. lugubrisat one site. We found no difference in reproductive output, body size, or larval survival across shore heights forM. lugubris,suggesting that egg-laying behavior buffers developing stages from the relatively high level of thermal variation experienced due to daily tidal emersion. However, across latitudes, reproductive output increased toward the leading range edge forA. spirata, and body size increased for both species. Increased vital rates at the leading range edge could increase whelk population growth and expansion, allowing species to persist under climate change even if contractions occur at trailing edges.more » « less
An official website of the United States government
