ABSTRACT Avian irruptions are facultative, often periodic, migrations of thousands of birds outside of their resident range. Irruptive movements produce regional anomalies of abundance that oscillate over time, forming ecological dipoles (geographically disjunct regions of low and high abundance) at continental scales. Potential drivers of irruptions include climate and food variability, but these relationships are rarely tested over broad geographic scales. We used community science data on winter bird abundance (1989–2021) to identify spatiotemporal patterns of irruption for nine boreal birds across the United States and Canada and compared them to time series of winter climate and annual tree seed production. We hypothesized that, during irruption, bird abundance would decrease in regions experiencing colder winter climates (climate variability hypothesis) or low seed production resulting from the boom‐and‐bust of widespread mast‐seeding patterns (resource variability hypothesis). Across all species, we detected latitudinal or longitudinal irruption modes, or both, demonstrating north–south and east–west migration dynamics across the northern United States and southern Canada. Seven of nine species displayed associations consistent with the climate variability hypothesis and six with the resource variability hypothesis. While irruption dynamics are likely entrained by multiple environmental drivers, future climate change could alter the spatial and temporal characteristics of avian irruption.
more »
« less
This content will become publicly available on July 1, 2026
The influence of geographic ranges, climatic niches and temperature fluctuations on population variability
The existence of patterns in population dynamics across species geographic ranges and climatic niches is a pervasive idea in ecology. Population variability (i.e. temporal variability in population density) should hypothetically increase near range edges or niche limits because of less suitable environments in these areas, but the occurrence of such patterns remains largely unexplored. Further, fluctuations in temperature could pose demographic constraints on populations and also influence their variability. We used Breeding Bird Survey data to show that the population variability of 97 resident North American birds consistently increases towards their niche limits and in areas with more variable temperatures, but not towards their geographic range edges. However, our model has limited explanatory power, and phylogenetic history and species traits could not explain these results. These findings suggest that other factors, such as biotic interactions and resource availability, might be more important drivers of population variability in resident North American birds.
more »
« less
- PAR ID:
- 10630335
- Publisher / Repository:
- The Royal Society
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 292
- Issue:
- 2051
- ISSN:
- 1471-2954
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The impacts of climate change have re‐energized interest in understanding the role of climate in setting species geographic range edges. Despite the strong focus on species' distributions in ecology and evolution, defining a species range edge is theoretically and empirically difficult. The challenge of determining a range edge and its relationship to climate is in part driven by the nested nature of geography and the multidimensionality of climate, which together generate complex patterns of both climate and biotic distributions across landscapes. Because range‐limiting processes occur in both geographic and climate space, the relationship between these two spaces plays a critical role in setting range limits. With both conceptual and empirical support, we argue that three factors—climate heterogeneity, collinearity among climate variables, and spatial scale—interact to shape the spatial structure of range edges along climate gradients, and we discuss several ways that these factors influence the stability of species range edges with a changing climate. We demonstrate that geographic and climate edges are often not concordant across species ranges. Furthermore, high climate heterogeneity and low climate collinearity across landscapes increase the spectrum of possible relationships between geographic and climatic space, suggesting that geographic range edges and climatic niche limits correspond less frequently than we may expect. More empirical explorations of how the complexity of real landscapes shapes the ecological and evolutionary processes that determine species range edges will advance the development of range limit theory and its applications to biodiversity conservation in the context of changing climate.more » « less
-
Populations fluctuate over time and across geographical space, and understanding how different factors contribute to population variability is a central goal in population ecology. There is a particular interest in identifying trends of population variability within geographical ranges as population densities of species can fluctuate substantially across geographical space. A common assumption is that populations vary more near species geographical range edges because of unsuitable environments and higher vulnerability to environmental variability in these areas. However, empirical data rarely support this expectation, suggesting that population variability is not related to its position within species geographical ranges. We propose that performance curves, which describe the relationship between population growth rates and environmental conditions, can be used to disentangle geographical patterns of population variability. Performance curves are important for understanding population variability because populations fluctuate more in locations where they have lower growth rates owing to unsuitable environmental conditions. This is important for the assessment of these geographical patterns in population variability because geographical edges often do not reflect environmental edges. Considering species performance curves when evaluating geographical patterns of population variability would also allow researchers to detect populations that are more susceptible to future changes in environmental conditions.more » « less
-
Abstract Species that are geographically widespread may exist across environmentally heterogeneous landscapes that could influence patterns of occupation and phylogeographic structure. Previous studies have suggested that geographic range size should be positively correlated with niche breadth, allowing widespread species to sustain viable populations over diverse environmental gradients. We examined the congruence of phenotypic and phylogenetic divergence with the environmental factors that help maintain species level diversity in the geographically widespread hoary bats ( Lasiurus cinereus sensu lato) across their distribution. Genetic sequences were analyzed using multiple phylogenetic and species delimitation methods, and phenotypic data were analyzed using supervised and unsupervised machine learning approaches. Spatial data from environmental, geographic, and topographic features were analyzed in a multiple regression analysis to determine their relative effect on phenotypic diversity. Ecological niches of each hoary bat species were examined in environmental space to quantify niche overlap, equivalency, and the magnitude of niche differentiation. Phylogenetic and species delimitation analyses support existence of three geographically structured species of hoary bat, each of which is phenotypically distinct. However, the Hawaiian hoary bat is morphologically more similar to the South American species than to the North American species despite a closer phylogenetic relationship to the latter. Multiple regression and niche analyses revealed higher environmental similarities between the South American and Hawaiian species. Hoary bats thus exhibit a pattern of phenotypic variation that disagrees with well-supported genetic divergences, instead indicating phenotypic convergence driven by similar environmental features and relatively conserved niches occupied in tropical latitudes.more » « less
-
Abstract Reliable maps of species distributions are fundamental for biodiversity research and conservation. The International Union for Conservation of Nature (IUCN) range maps are widely recognized as authoritative representations of species’ geographic limits, yet they might not always align with actual occurrence data. In recent area of habitat (AOH) maps, areas that are not habitat have been removed from IUCN ranges to reduce commission errors, but their concordance with actual species occurrence also remains untested. We tested concordance between occurrences recorded in camera trap surveys and predicted occurrences from the IUCN and AOH maps for 510 medium‐ to large‐bodied mammalian species in 80 camera trap sampling areas. Across all areas, cameras detected only 39% of species expected to occur based on IUCN ranges and AOH maps; 85% of the IUCN only mismatches occurred within 200 km of range edges. Only 4% of species occurrences were detected by cameras outside IUCN ranges. The probability of mismatches between cameras and the IUCN range was significantly higher for smaller‐bodied mammals and habitat specialists in the Neotropics and Indomalaya and in areas with shorter canopy forests. Our findings suggest that range and AOH maps rarely underrepresent areas where species occur, but they may more often overrepresent ranges by including areas where a species may be absent, particularly at range edges. We suggest that combining range maps with data from ground‐based biodiversity sensors, such as camera traps, provides a richer knowledge base for conservation mapping and planning.more » « less
An official website of the United States government
