Abstract Although lubricants play an essential role in reducing wear and friction in mechanical systems, environmental issues persist. In the past decades, Ionic Liquids (ILs) have arisen as environmentally friendly alternatives to conventional lubricants and additives. ILs are low-volatile and non-flammable salts that possess low melting points (below 100 °C). Their tunable properties, achieved by selecting the appropriate cation and anion, make them ideal candidates for different applications, including lubricants. In recent times, Protic Ionic Liquids (PILs) have attracted attention in the tribological community as a cost-effective alternative to conventional aprotic counterparts. In this work, a choline-amino acid ionic liquid, derived only from renewable, biodegradable, and biocompatible products, was synthesized, and investigated as both neat lubricant and additive to non-polar oil. The lubricating properties of [CHO][GLY] were studied both as a neat lubricant and as a 1 wt. % additive to a polyalphaolefin (PAO) oil using a ball-on-flat reciprocating friction tester. AISI 52100 steel disks were tested against AISI 52100 steel balls using either [CHO][GLY] or the mixture of PAO+[CHO][GLY]. For comparison purposes, the commercially available base oil, PAO, was also tested. Preliminary results showed no major differences in friction between the lubricants used. Nevertheless, the addition of 1 wt.% to the PAO demonstrated a remarkable 30% reduction in wear on the steel disk. This encouraging improvement in anti-wear characteristics raises the potential advancement of lubrication technology with the choline-amino acid ionic liquid, coupled with its environmentally friendly nature. Energy-dispersive X-ray (EDX) spectroscopy, non-contact profilometry, and scanning electron microscopy (SEM) were used to study the worn steel surfaces and elucidate the wear mechanisms.
more »
« less
This content will become publicly available on March 5, 2026
Thermo-rheological and tribological properties of low- and high-oleic vegetable oils as sustainable bio-based lubricants
Vegetable oil-based lubricants have attracted increased research attention in recent decades as sustainable alternatives to conventional petroleum-based lubricants in metal machining.
more »
« less
- Award ID(s):
- 2218786
- PAR ID:
- 10630355
- Publisher / Repository:
- The Royal Society of Chemistry
- Date Published:
- Journal Name:
- RSC Sustainability
- Volume:
- 3
- Issue:
- 3
- ISSN:
- 2753-8125
- Page Range / eLocation ID:
- 1461 to 1476
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)This study characterized airborne microdroplet diameters and size distribution from two commercially available lubricants A and B for internal minimum quantity lubrication (MQL). The effects of air pressure, oil channel size, physical properties of lubricants on the resultant microdroplets and through-tool MQL drilling performance were studied. Airborne microdroplet diameters were highly sensitive to the coolant channel sizes and air pressure. Cluster method was used to divide microdroplets into smaller clusters for comparison. Experimental data show that the average airborne microdroplet of lubricant B was larger than that of lubricant A at different air pressures and channel sizes. The contact angle of lubricant A was at least 10° less than that of lubricant B when depositing on glass or aluminium. High-speed imaging showed the tendency of more viscous lubricant B sticking to the drill tip, and higher pressure and longer time was required to atomize this viscous oil. Built-up-edges were less significant when drilling A380 aluminium with lubricant A. Due to high machinability of A380 aluminium, variation of hole diameter and hole cylindricity were minimal when drilling with different lubricants. Insignificant improvement in hole quality was observed when drilling with excessive amount of MQL lubricants or high concentration of lubricant C in flood coolant.more » « less
-
Abstract The viscosity of fluids and their dependence on shear rate, known as shear thinning, plays a critical role in applications ranging from lubricants and coatings to biomedical and food-processing industries. Traditional models such as the Carreau and Eyring theories offer competing explanations for shear-thinning behavior. The Carreau model attributes viscosity reduction to molecular distortions, while the Eyring model describes shear thinning as a stress-induced transition over an activation energy barrier. This work proposes an extended-Eyring model that incorporates stress-dependent activation volumes, bridging key aspects of both theories. In modifying transition-state theory by using an Evans-Polanyi perturbation analysis, we derive a generalized viscosity equation that accounts for the molecular-scale rearrangements governing fluid flow. The model is validated against computational and experimental data, including shear-thinning behavior of pure squalane and polyethylene oxide (PEO) aqueous solutions. Comparative analysis with Carreau-Yasuda and conventional Eyring models demonstrates excellent accuracy in predicting viscosity trends over a wide range of shear rates. The introduction of stress-dependent activation volumes provides a description of molecular exchange kinetics accounting for structural reorganization under shear. These findings offer a unified framework for modeling shear thinning and have broad implications for designing advanced lubricants, polymer solutions, and complex fluids with tailored flow properties. Graphical Abstractmore » « less
-
Abstract Conventional lubricants face significant challenges in electric vehicle (EV) systems due to their low electrical conductivity and inability to mitigate tribo-electrification effects which can result in increased friction, wear, and electrical discharge damage under external electrification. Consequently, conductive lubricants like ionic liquids (ILs) have emerged as promising alternatives, offering enhanced compatibility with EV applications. This study investigated the tribological behavior of four phosphonium-based room temperature ionic liquids (PRTILs) with trihexyltetradecyl phosphonium [P6,6,6,14] or tributyltetradecyl phosphonium [P4,4,4,14] cations and saccharinate [Sacc] or benzoate [Benz] anions under electrified conditions, targeting potential EV applications. Physicochemical properties, including viscosity and ionic conductivity, were measured using a viscometer and a conductivity meter, while tribological properties were evaluated using an electrified mini-traction machine and an electrified rotary ball-on-disk setup. The results revealed that all the PRTILs exhibited superior tribological (friction and wear) performance than mineral oil with or without electrification. PRTILs with the [Sacc] anion feature a double aromatic ring structure, while those with the [Benz] anion feature a single aromatic ring structure. Under low electrification (10 mA), [P6,6,6,14][Sacc] outperformed [Benz]-based PRTILs, showing a lower coefficient of friction and wear due to their higher viscosity and lower ionic conductivity. Additionally, [P6,6,6,14][Sacc] showed a power loss lower than [P4,4,4,14][Sacc] but higher than [Benz]-based PRTILs under tribo-electrification. The addition of graphene nanoplatelets (GNPs) reduced the power loss of [P6,6,6,14][Sacc] by 24% by reducing the electric contact resistance. Overall, double-ring aromatic [P6,6,6,14][Sacc] demonstrated superior tribological performance, and GNP additives enhanced their power efficiency, offering a promising pathway for IL-based lubricant development for electrified conditions.more » « less
-
Abstract Ionic liquids (ILs) have attracted intensive research interest due to their outstanding physiochemical properties. However, comprehensive design is necessary for targeted applications and has rarely been conducted. As a result, the industry‐scale application of ILs is still very limited. In this academia–industry collaborative research among the University of Pittsburgh, Virginia Tech. University, and Seagate Technology LLC, we report the design, synthesis, molecular dynamics (MD) simulation, and characterization of a nanometer‐thick IL, which contains abundant fluorinated segments and a hydroxyl endgroup, as the next‐generation nano‐lubricant for hard disk drives (HDDs). The lab‐ and industry‐level testing results indicate that the IL lubricant performs significantly better than the state‐of‐the‐art lubricant, that is, perfluoropolyether (PFPE) that has been utilized for three decades in the HDD industry in two key functions: thermal stability and fly clearance. Meanwhile, the IL lubricant also shows excellent lubricity and durability. The outstanding performance of the IL has been attributed to its unique molecular structure on the solid substrate, which is supported by MD simulation results. Our work establishes the IL as a promising candidate among the next‐generation media lubricants in HDD industry. Meanwhile, the finding obtained here has important implications in many other applications involving nano‐lubricants.more » « less
An official website of the United States government
