Contextual bandit algorithms are increasingly replacing non-adaptive A/B tests in e-commerce, healthcare, and policymaking because they can both improve outcomes for study participants and increase the chance of identifying good or even best policies. To support credible inference on novel interventions at the end of the study, nonetheless, we still want to construct valid confidence intervals on average treatment effects, subgroup effects, or value of new policies. The adaptive nature of the data collected by contextual bandit algorithms, however, makes this difficult: standard estimators are no longer asymptotically normally distributed and classic confidence intervals fail to provide correct coverage. While this has been addressed in non-contextual settings by using stabilized estimators, variance stabilized estimators in the contextual setting pose unique challenges that we tackle for the first time in this paper. We propose the Contextual Adaptive Doubly Robust (CADR) estimator, a novel estimator for policy value that is asymptotically normal under contextual adaptive data collection. The main technical challenge in constructing CADR is designing adaptive and consistent conditional standard deviation estimators for stabilization. Extensive numerical experiments using 57 OpenML datasets demonstrate that confidence intervals based on CADR uniquely provide correct coverage.
more »
« less
This content will become publicly available on August 25, 2026
Asymptotic Inference for Multi-Stage Stationary Treatment Policy with Variable Selection
Dynamic treatment regimes or policies are a sequence of decision functions over multiple stages that are tailored to individual features. One important class of treatment policies in practice, namely multi-stage stationary treatment policies, prescribes treatment assignment probabilities using the same decision function across stages, where the decision is based on the same set of features consisting of time-evolving variables (e.g., routinely collected disease biomarkers). Although there has been extensive literature on constructing valid inference for the value function associated with dynamic treatment policies, little work has focused on the policies themselves, especially in the presence of high-dimensional feature variables. We aim to fill the gap in this work. Specifically, we first obtain the multi-stage stationary treatment policy by minimizing the negative augmented inverse probability weighted estimator of the value function to increase asymptotic efficiency. A penalty is applied on the policy parameters to select important feature variables. We then construct one-step improvements of the policy parameter estimators for valid inference. Theoretically, we show that the improved estimators are asymptotically normal, even if nuisance parameters are estimated at a slow convergence rate and the dimension of the feature variables increases with the sample size. Our numerical studies demonstrate that the proposed method estimates a sparse policy with a near-optimal value function and conducts valid inference for the policy parameters.
more »
« less
- Award ID(s):
- 2100729
- PAR ID:
- 10630411
- Editor(s):
- zhu, Ji
- Publisher / Repository:
- Journal of Machine Learning Research
- Date Published:
- Journal Name:
- Journal of machine learning
- ISSN:
- 2790-203X
- Subject(s) / Keyword(s):
- Augmented inverse probability weighted estimator, dynamic treatment regime, high-dimensional inference, policy parameter, sparse estimation
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Multi-stage stochastic linear programs (MSLPs) are notoriously hard to solve in general. Linear decision rules (LDRs) yield an approximation of an MSLP by restricting the decisions at each stage to be an affine function of the observed uncertain parameters. Finding an optimal LDR is a static optimization problem that provides an upper bound on the optimal value of the MSLP, and, under certain assumptions, can be formulated as an explicit linear program. Similarly, as proposed by Kuhn et al. (Math Program 130(1):177–209, 2011) a lower bound for an MSLP can be obtained by restricting decisions in the dual of the MSLP to follow an LDR. We propose a new approximation approach for MSLPs, two-stage LDRs. The idea is to require only the state variables in an MSLP to follow an LDR, which is sufficient to obtain an approximation of an MSLP that is a two-stage stochastic linear program (2SLP). We similarly propose to apply LDR only to a subset of the variables in the dual of the MSLP, which yields a 2SLP approximation of the dual that provides a lower bound on the optimal value of the MSLP. Although solving the corresponding 2SLP approximations exactly is intractable in general, we investigate how approximate solution approaches that have been developed for solving 2SLP can be applied to solve these approximation problems, and derive statistical upper and lower bounds on the optimal value of the MSLP. In addition to potentially yielding better policies and bounds, this approach requires many fewer assumptions than are required to obtain an explicit reformulation when using the standard static LDR approach. A computational study on two example problems demonstrates that using a two-stage LDR can yield significantly better primal policies and modestly better dual policies than using policies based on a static LDR.more » « less
-
We consider off-policy evaluation (OPE) in Partially Observable Markov Decision Processes (POMDPs), where the evaluation policy depends only on observable variables and the behavior policy depends on unobservable latent variables. Existing works either assume no unmeasured confounders, or focus on settings where both the observation and the state spaces are tabular. In this work, we first propose novel identification methods for OPE in POMDPs with latent confounders, by introducing bridge functions that link the target policy’s value and the observed data distribution. We next propose minimax estimation methods for learning these bridge functions, and construct three estimators based on these estimated bridge functions, corresponding to a value function-based estimator, a marginalized importance sampling estimator, and a doubly-robust estimator. Our proposal permits general function approximation and is thus applicable to settings with continuous or large observation/state spaces. The nonasymptotic and asymptotic properties of the proposed estimators are investigated in detail. A Python implementation of our proposal is available at https://github.com/jiaweihhuang/ Confounded-POMDP-Exp.more » « less
-
There are many economic parameters that depend on nonparametric first steps. Examples include games, dynamic discrete choice, average exact consumer surplus, and treatment effects. Often estimators of these parameters are asymptotically equivalent to a sample average of an object referred to as the influence function. The influence function is useful in local policy analysis, in evaluating local sensitivity of estimators, and constructing debiased machine learning estimators. We show that the influence function is a Gateaux derivative with respect to a smooth deviation evaluated at a point mass. This result generalizes the classic Von Mises (1947) and Hampel (1974) calculation to estimators that depend on smooth nonparametric first steps. We give explicit influence functions for first steps that satisfy exogenous or endogenous orthogonality conditions. We use these results to generalize the omitted variable bias formula for regression to policy analysis for and sensitivity to structural changes. We apply this analysis and find no sensitivity to endogeneity of average equivalent variation estimates in a gasoline demand application.more » « less
-
null (Ed.)An important goal in the design and development of Intelligent Tutoring Systems (ITSs) is to have a system that adaptively reacts to students’ behavior in the short term and effectively improves their learning performance in the long term. Inducing effective pedagogical strategies that accomplish this goal is an essential challenge. To address this challenge, we explore three aspects of a Markov Decision Process (MDP) framework through four experiments. The three aspects are: 1) reward function, detecting the impact of immediate and delayed reward on effectiveness of the policies; 2) state representation, exploring ECR-based, correlation-based, and ensemble feature selection approaches for representing the MDP state space; and 3) policy execution, investigating the effectiveness of stochastic and deterministic policy executions on learning. The most important result of this work is that there exists an aptitude-treatment interaction (ATI) effect in our experiments: the policies have significantly different impacts on the particular types of students as opposed to the entire population. We refer the students who are sensitive to the policies as the Responsive group. All our following results are based on the Responsive group. First, we find that an immediate reward can facilitate a more effective induced policy than a delayed reward. Second, The MDP policies induced based on low correlation-based and ensemble feature selection approaches are more effective than a Random yet reasonable policy. Third, no significant improvement was found using stochastic policy execution due to a ceiling effect.more » « less
An official website of the United States government
