skip to main content


Title: The influence function of semiparametric estimators
There are many economic parameters that depend on nonparametric first steps. Examples include games, dynamic discrete choice, average exact consumer surplus, and treatment effects. Often estimators of these parameters are asymptotically equivalent to a sample average of an object referred to as the influence function. The influence function is useful in local policy analysis, in evaluating local sensitivity of estimators, and constructing debiased machine learning estimators. We show that the influence function is a Gateaux derivative with respect to a smooth deviation evaluated at a point mass. This result generalizes the classic Von Mises (1947) and Hampel (1974) calculation to estimators that depend on smooth nonparametric first steps. We give explicit influence functions for first steps that satisfy exogenous or endogenous orthogonality conditions. We use these results to generalize the omitted variable bias formula for regression to policy analysis for and sensitivity to structural changes. We apply this analysis and find no sensitivity to endogeneity of average equivalent variation estimates in a gasoline demand application.  more » « less
Award ID(s):
1757140
NSF-PAR ID:
10469513
Author(s) / Creator(s):
;
Publisher / Repository:
Journal of the Econometric Society
Date Published:
Journal Name:
Quantitative Economics
Volume:
13
Issue:
1
ISSN:
1759-7323
Page Range / eLocation ID:
29 to 61
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Imbens, G. (Ed.)
    Many economic and causal parameters depend on nonparametric or high dimensional first steps. We give a general construction of locally robust/orthogonal moment functions for GMM, where first steps have no effect, locally, on average moment functions. Using these orthogonal moments reduces model selection and regularization bias, as is important in many applications, especially for machine learning first steps. Also, associated standard errors are robust to misspecification when there is the same number of moment functions as parameters of interest. We use these orthogonal moments and cross-fitting to construct debiased machine learning estimators of functions of high dimensional conditional quantiles and of dynamic discrete choice parameters with high dimensional state variables. We show that additional first steps needed for the orthogonal moment functions have no effect, globally, on average orthogonal moment functions. We give a general approach to estimating those additional first steps.We characterize double robustness and give a variety of new doubly robust moment functions.We give general and simple regularity conditions for asymptotic theory. 
    more » « less
  2. <italic>Abstract</italic>

    In this article, we propose a class of partial deconvolution kernel estimators for the nonparametric regression function when some covariates are measured with error and some are not. The estimation procedure combines the classical kernel methodology and the deconvolution kernel technique. According to whether the measurement error is ordinarily smooth or supersmooth, we establish the optimal local and global convergence rates for these proposed estimators, and the optimal bandwidths are also identified. Furthermore, lower bounds for the convergence rates of all possible estimators for the nonparametric regression functions are developed. It is shown that, in both the super and ordinarily smooth cases, the convergence rates of the proposed partial deconvolution kernel estimators attain the lower bound.The Canadian Journal of Statistics48: 535–560; 2020 © 2020 Statistical Society of Canada

     
    more » « less
  3. Estimation of heterogeneous causal effects—that is, how effects of policies and treatments vary across subjects—is a fundamental task in causal inference. Many methods for estimating conditional average treatment effects (CATEs) have been proposed in recent years, but questions surrounding optimality have remained largely unanswered. In particular, a minimax theory of optimality has yet to be developed, with the minimax rate of convergence and construction of rate-optimal estimators remaining open problems. In this paper, we derive the minimax rate for CATE estimation, in a Hölder-smooth nonparametric model, and present a new local polynomial estimator, giving high-level conditions under which it is minimax optimal. Our minimax lower bound is derived via a localized version of the method of fuzzy hypotheses, combining lower bound constructions for nonparametric regression and functional estimation. Our proposed estimator can be viewed as a local polynomial R-Learner, based on a localized modification of higher-order influence function methods. The minimax rate we find exhibits several interesting features, including a nonstandard elbow phenomenon and an unusual interpolation between nonparametric regression and functional estimation rates. The latter quantifies how the CATE, as an estimand, can be viewed as a regression/functional hybrid. 
    more » « less
  4. Summary

    We introduce a flexible marginal modelling approach for statistical inference for clustered and longitudinal data under minimal assumptions. This estimated estimating equations approach is semiparametric and the proposed models are fitted by quasi-likelihood regression, where the unknown marginal means are a function of the fixed effects linear predictor with unknown smooth link, and variance–covariance is an unknown smooth function of the marginal means. We propose to estimate the nonparametric link and variance–covariance functions via smoothing methods, whereas the regression parameters are obtained via the estimated estimating equations. These are score equations that contain nonparametric function estimates. The proposed estimated estimating equations approach is motivated by its flexibility and easy implementation. Moreover, if data follow a generalized linear mixed model, with either a specified or an unspecified distribution of random effects and link function, the model proposed emerges as the corresponding marginal (population-average) version and can be used to obtain inference for the fixed effects in the underlying generalized linear mixed model, without the need to specify any other components of this generalized linear mixed model. Among marginal models, the estimated estimating equations approach provides a flexible alternative to modelling with generalized estimating equations. Applications of estimated estimating equations include diagnostics and link selection. The asymptotic distribution of the proposed estimators for the model parameters is derived, enabling statistical inference. Practical illustrations include Poisson modelling of repeated epileptic seizure counts and simulations for clustered binomial responses.

     
    more » « less
  5. Baseband processing algorithms often require knowledge of the noise power, signal power, or signal-to-noise ratio (SNR). In practice, these parameters are typically unknown and must be estimated. Furthermore, the mean-square error (MSE) is a desirable metric to be minimized in a variety of estimation and signal recovery algorithms. However, the MSE cannot directly be used as it depends on the true signal that is generally unknown to the estimator. In this paper, we propose novel blind estimators for the average noise power, average receive signal power, SNR, and MSE. The proposed estimators can be computed at low complexity and solely rely on the large-dimensional and sparse nature of the processed data. Our estimators can be used (i) to quickly track some of the key system parameters while avoiding additional pilot overhead, (ii) to design low-complexity nonparametric algorithms that require such quantities, and (iii) to accelerate more sophisticated estimation or recovery algorithms. We conduct a theoretical analysis of the proposed estimators for a Bernoulli complex Gaussian (BCG) prior, and we demonstrate their efficacy via synthetic experiments. We also provide three application examples that deviate from the BCG prior in millimeter-wave multi-antenna and cell-free wireless systems for which we develop nonparametric denoising algorithms that improve channel-estimation accuracy with a performance comparable to denoisers that assume perfect knowledge of the system parameters. 
    more » « less