Abstract Sunspot light bridges (LBs) exhibit a wide range of short-lived phenomena in the chromosphere and transition region. In contrast, we use here data from the Multi-Application Solar Telescope (MAST), the Interface Region Imaging Spectrograph (IRIS), Hinode, the Atmospheric Imaging Assembly (AIA), and the Helioseismic and Magnetic Imager (HMI) to analyze the sustained heating over days in an LB in a regular sunspot. Chromospheric temperatures were retrieved from the MAST Caiiand IRIS Mgiilines by nonlocal thermodynamic equilibrium inversions. Line widths, Doppler shifts, and intensities were derived from the IRIS lines using Gaussian fits. Coronal temperatures were estimated through the differential emission measure, while the coronal magnetic field was obtained from an extrapolation of the HMI vector field. At the photosphere, the LB exhibits a granular morphology with field strengths of about 400 G and no significant electric currents. The sunspot does not fragment, and the LB remains stable for several days. The chromospheric temperature, IRIS line intensities and widths, and AIA 171 and 211 Å intensities are all enhanced in the LB with temperatures from 8000 K to 2.5 MK. Photospheric plasma motions remain small, while the chromosphere and transition region indicate predominantly redshifts of 5–20 km s−1with occasional supersonic downflows exceeding 100 km s−1. The excess thermal energy over the LB is about 3.2 × 1026erg and matches the radiative losses. It could be supplied by magnetic flux loss of the sunspot (7.5 × 1027erg), kinetic energy from the increase in the LB width (4 × 1028erg), or freefall of mass along the coronal loops (6.3 × 1026erg).
more »
« less
This content will become publicly available on July 1, 2026
Quantifying Suppression of Solar Surface Magnetic Flux Advection with Increasing Field Strength
Abstract One of the main theories for heating of the solar corona is based on the idea that solar convection shuffles and tangles magnetic field lines to make many small-scale current sheets that, via reconnection, heat coronal loops. S. K. Tiwari et al. present evidence that, besides depending on loop length and other factors, the brightness of a coronal loop depends on the field strength in the loop’s feet and the freedom of convection in the feet. While it is known that strong solar magnetic fields suppress convection, the decrease in the speed of horizontal advection of magnetic flux with increasing field strength has not been quantified before. We quantify that trend by analyzing 24 hr of Helioseismic Magnetic Imager-SHARP vector magnetograms of each of six sunspot-active regions and their surroundings. Using Fourier local correlation tracking, we estimate the horizontal advection speed of the magnetic flux at each pixel in which the vertical component of the magnetic field strength (Bz) is well above (≥150 G) noise level. We find that the average horizontal advection speed of magnetic flux steadily decreases asBzincreases, from 110 ± 3 m s−1for 150 G (in network and plage) to 10 ± 4 m s−1for 2500 G (in sunspot umbra). The trend is well fit by a fourth-degree polynomial. These results quantitatively confirm the expectation that magnetic flux advection is suppressed by increasing magnetic field strength. The presented quantitative relation should be useful for future MHD simulations of coronal heating.
more »
« less
- Award ID(s):
- 2307505
- PAR ID:
- 10630440
- Publisher / Repository:
- As per AAS
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 987
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 98
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Context.The interaction between magnetic fields and convection in sunspots during their decay process remains poorly understood, whereas the formation of sunspots is relatively well studied and fully modeled. Works on the velocity scales at the solar surface have pointed to the existence of the family of granules, whose interaction with the magnetic field leads to the formation of supergranules and their networks, which are visible at the solar surface. Aims.The aim of this paper is to consider relationship between the decay of sunspots and convection via the motion of the family of granules and how the diffusion mechanism of magnetic field operates in a decaying sunspot. Methods.We report the decay of a sunspot observed by the 1.6 m Goode Solar Telescope (GST) with the TiO Broadband Filter Imager (BFI) and the Near-InfraRed Imaging Spectropolarimeter (NIRIS). The analysis was aided by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO). In the first step, we followed the decay of the sunspot with HMI data over three days by constructing its evolving area and total magnetic flux. In the second step, the high spatial and temporal resolution of the GST instruments allowed us to analyze the causes of the decay of the sunspot. Afterward, we followed the emergence of granules in the moat region around the sunspot over six hours. The evolution of the trees of fragmenting granules (TFGs) was derived based on their relationship with the horizontal surface flows. Results.We find that the area and total magnetic flux display an exponential decrease over the course of the sunspot decay. We identified 22 moving magnetic features (MMFs) in the moats of pores, which is a signature of sunspot decay through diffusion. We note that the MMFs were constrained to follow the borders of TFGs during their journey away from the sunspot. Conclusions.The TFGs and their development contribute to the diffusion of the magnetic field outside the sunspot. The conclusion of our analysis shows the important role of the TFGs in sunspot decay. Finally, the family of granules evacuates the magnetic field.more » « less
-
Abstract The solar corona is much hotter than the photosphere and chromosphere, but the physical mechanism responsible for heating the coronal plasma remains unidentified. The thermal microwave emission, which is produced in a strong magnetic field above sunspots, is a promising but barely exploited tool for studying the coronal magnetic field and plasma. We analyzed the microwave observations of eight solar active regions obtained with the Siberian Radioheliograph in the years 2022–2024 in the frequency range of 6–12 GHz. We produced synthetic microwave images based on various coronal heating models, and determined the model parameters that provided the best agreement with the observations. The observations and simulations strongly favor either a steady-state (continuous) plasma heating process or high-frequency heating by small energy release events with a short cadence. The average magnetic field strength in a coronal loop was found to decrease with the loop length, following a scaling law with the most probable index of about −0.55. In the majority of cases, the estimated volumetric heating rate was weakly dependent on the magnetic field strength and decreased with the coronal loop length following a scaling law with an index of about −2.5. Among the known theoretical heating mechanisms, the model based on wave transmission or reflection in coronal loops acting as resonance cavities was found to provide the best agreement with the observations. The obtained results did not demonstrate a significant dependence on the emission frequency in the considered range.more » « less
-
Abstract We present both the observation and the magnetohydrodynamics (MHD) simulation of the M2.4 flare (SOL2017-07-14T02:09) of NOAA active region (AR) 12665 with a goal to identify its initiation mechanism. The observation by the Atmospheric Image Assembly (AIA) on board the Solar Dynamics Observatory (SDO) shows that the major topology of the AR is a sigmoidal configuration associated with a filament/flux rope. A persistent emerging magnetic flux and the rotation of the sunspot in the core region were observed with Magnetic Imager (HMI) on board the SDO on the timescale of hours before and during the flare, which may provide free magnetic energy needed for the flare/coronal mass ejection (CME). A high-lying coronal loop is seen moving outward in AIA EUV passbands, which is immediately followed by the impulsive phase of the flare. We perform an MHD simulation using the potential magnetic field extrapolated from the measured pre-flare photospheric magnetic field as initial conditions and adopting the observed sunspot rotation and flux emergence as the driving boundary conditions. In our simulation, a sigmoidal magnetic structure and an overlying magnetic flux rope (MFR) form as a response to the imposed sunspot rotation, and the MFR rises to erupt like a CME. These simulation results in good agreement with the observation suggest that the formation of the MFR due to the sunspot rotation and the resulting torus and kink instabilities were essential to the initiation of this flare and the associated coronal mass ejection.more » « less
-
Solar flares are powered by a rapid release of energy in the solar corona, thought to be produced by the decay of the coronal magnetic field strength. Direct quantitative measurements of the evolving magnetic field strength are required to test this. We report microwave observations of a solar flare, showing spatial and temporal changes in the coronal magnetic field. The field decays at a rate of~5 Gauss per second for 2 minutes, as measured within a flare subvolume of ~1028cubic centimeters. This fast rate of decay implies a sufficiently strong electric field to account for the particle acceleration that produces the microwave emission. The decrease in stored magnetic energy is enough to power the solar flare, including the associated eruption, particle acceleration, and plasma heating.more » « less
An official website of the United States government
