skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Life history and nesting traits reflect urban tolerance in coastal birds
Rapid urbanization has prompted considerable interest in understanding which species thrive or fail in these novel environments. Because half of the human population resides in coastal areas, studies that explicitly examine urban tolerances among coastal species are needed. Here, we sought to explain variation in coastal bird tolerances to urban habitats with species life history, diet, nest, social, sensory and sexual selection traits using phylogenetically informed models and three urban-tolerance indexes. We found that nest site height was the strongest predictor, with species nesting in elevated locations exhibiting greater urban tolerance, probably due to reduced anthropogenic disturbances and risk of predation. Life-history traits, including larger clutch sizes and lower brood value, reflecting more lifetime breeding attempts, also predicted urban tolerance, suggesting that fast reproductive strategies buffer against urban-associated risks. Contrary to our prediction, species with altricial young displayed higher urban tolerance, potentially due to shorter incubation and fledging times. Collectively, our results suggest that many of the predictors related to urban tolerance in songbirds also predict tolerances among a broader swath of avian diversity. Such knowledge should help researchers forecast the composition of coastal, urban bird communities in the future and will inform efforts to conserve functionally diverse coastal ecosystems.  more » « less
Award ID(s):
2316363 2409984
PAR ID:
10630466
Author(s) / Creator(s):
; ;
Publisher / Repository:
The Royal Society
Date Published:
Journal Name:
Royal Society Open Science
Volume:
12
Issue:
6
ISSN:
2054-5703
Page Range / eLocation ID:
250116
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Behavioral traits are often the first response to changing environmental conditions, including human induced rapid environmental change. For example, animals living in urban areas are often more aggressive than rural animals. This is especially evident in songbirds; males of several species display elevated aggression in urban habitats. Increased male aggression has been associated with reduced parental care, but the consequences of this trade-off for males, social partners, and offspring in the context of urbanization remains unclear. We explored the effects of increased urban male aggression on the life history traits, parental care, and offspring outcomes of song sparrows (Melospiza melodia). We predicted that urban males would reduce paternal investment and result in urban females providing greater nestling care or reduced fledging success in urban habitats compared to rural. Contrary to our prediction, aggressive urban males did not decrease care but visited the nest more often compared to rural males. Additionally, urban birds had higher nest and fledging success compared to rural, though this was largely due to higher nest predation in rural habitats. Our study is among the first to evaluate trade-offs associated with elevated aggression expressed by urban animals and adds to a growing body of evidence that urban habitats provide benefits to some species. 
    more » « less
  2. Abstract Animals that engage in long-distance seasonal migration experience strong selective pressures on their metabolic performance and life history, with potential consequences for molecular evolution. Species with slow life histories typically show lower rates of synonymous substitution (dS) than “fast” species. Previous research suggests long-distance seasonal migrants have a slower life history strategy than short-distance migrants, raising the possibility that rates of molecular evolution may covary with migration distance. Additionally, long-distance migrants may face strong selection on metabolically-important mitochondrial genes due to their long-distance flights. Using over 1,000 mitochondrial genomes, we assessed the relationship between migration distance and mitochondrial molecular evolution in 39 boreal-breeding migratory bird species. We show that migration distance correlates negatively with dS, suggesting that the slow life history associated with long-distance migration is reflected in rates of molecular evolution. Mitochondrial genes in every study species exhibited evidence of purifying selection, but the strength of selection was greater in short-distance migrants, contrary to our predictions. This result may indicate effects of selection for cold tolerance on mitochondrial evolution among species overwintering at high latitudes. Our study demonstrates that the pervasive correlation between life history and molecular evolutionary rates exists in the context of differential adaptations to seasonality. 
    more » « less
  3. If we better understand how fungal responses to global change are governed by their traits, we can improve predictions of fungal community composition and ecosystem function. Specifically, we can examine trade-offs among traits, in which the allocation of finite resources toward one trait reduces the investment in others. We hypothesized that trade-offs among fungal traits relating to rapid growth, resource capture, and stress tolerance sort fungal species into discrete life history strategies. We used the Biolog Filamentous Fungi database to calculate maximum growth rates of 37 fungal species and then compared them to their functional traits from the fun fun database. In partial support of our hypothesis, maximum growth rate displayed a negative relationship with traits related to resource capture. Moreover, maximum growth rate displayed a positive relationship with amino acid permease, forming a putative Fast Growth life history strategy. A second putative life history strategy is characterized by a positive relationship between extracellular enzymes, including cellobiohydrolase 6, cellobiohydrolase 7, crystalline cellulase AA9, and lignin peroxidase. These extracellular enzymes were negatively related to chitosanase 8, an enzyme that can break down a derivative of chitin. Chitosanase 8 displayed a positive relationship with many traits that were hypothesized to cluster separately, forming a putative Blended life history strategy characterized by certain resource capture, fast growth, and stress tolerance traits. These trait relationships complement previously explored microbial trait frameworks, such as the Competitor-Stress Tolerator-Ruderal and the Yield-Resource Acquisition-Stress Tolerance schemes. 
    more » « less
  4. Abstract The reproductive success of birds is closely tied to the characteristics of their nests. It is crucial to understand the distribution of nest traits across phylogenetic and geographic dimensions to gain insight into bird evolution and adaptation. Despite the extensive historical documentation on breeding behavior, a structured dataset describing bird nest characteristics has been lacking. To address this gap, we have compiled a comprehensive dataset that characterizes three ecologically and evolutionarily significant nest traits—site, structure, and attachment—for 9,248 bird species, representing all 36 orders and 241 out of the 244 families. By defining seven sites, seven structures, and four attachment types, we have systematically classified the nests of each species using information from text descriptions, photos, and videos sourced from online databases and literature. This nest traits dataset serves as a valuable addition to the existing body of morphological and ecological trait data for bird species, providing a useful resource for a wide range of avian macroecological and macroevolutionary research. 
    more » « less
  5. Abstract Populations across a species’ range may be locally adapted, and failure to recognize this variation can lead to inaccurate predictions of their resilience or vulnerability to climate change. Because life history traits are directly linked to fitness, life history theory can serve as a useful framework for evaluating how populations within species may respond to rapid environmental change. However, relatively few studies quantify multiple life history traits and their tradeoffs across many populations, especially in marine taxa. Here, we used a 10-month laboratory experiment to quantify a suite of reproductive traits in populations spanning the strongest latitudinal temperature gradient in the world’s coastal oceans. We examined reproductive traits in wild-captured adults exposed to simulated local conditions for 7 native Atlantic and 4 introduced Pacific populations of the marine predatory gastropodUrosalpinx cinerea. Our data reveals that reproductive season length, the number of reproductive attempts, and annual fecundity unimodally peaked at mid-latitude populations, the species’ range-center. Introduced populations had comparably few spawning attempts and low fecundity despite a longer reproductive period in a less seasonal environment. We then conducted a second experiment quantifying thermal tolerance of developing embryos from 3 native populations, which revealed high sensitivity to temperature at early life stages but weak population differentiation. Taken together, our data reveal stark differences in reproduction that appear to reflect “fast” and “slow” paced lifestyles, which may maximize fitness by spreading the risk of reproductive failure over a single season or lifetime. Our results indicate that warm range-edge populations are highly vulnerable to warming, as low embryonic thermal tolerance may shorten the spawning season and warming is likely to reduce fecundity. This study highlights heterogeneity in life history traits across marine populations that may underlie differential vulnerability to climate warming. Open research statementAll data and code will be publicly available via Figshare and the NSF Biological and Chemical Oceanography Data Management Office (BCO-DMO). 
    more » « less