skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Resolving the Young 2 Cygni Runaway Star into a Binary Using iLocater
Precision radial velocity spectrographs that use adaptive optics (AO) show promise to advance telescope observing capabilities beyond those of seeing-limited designs. We are building a spectrograph for the Large Binocular Telescope (LBT) named iLocater that uses AO to inject starlight directly into single mode fibers. iLocater's first acquisition camera system (the SX camera), which receives light from one of the 8.4 m diameter primary mirrors of the LBT, was initially installed in summer 2019 and has since been used for several commissioning runs. We present results from first-light observations that include on-sky measurements as part of commissioning activities. Imaging measurements of the bright B3IV star 2 Cygni (V= 4.98) resulted in the direct detection of a candidate companion star at an angular separation of onlyθ = 70 mas. Follow-up AO measurements using Keck/NIRC2 recover the candidate companion in multiple filters. AnR ≈ 1500 miniature spectrograph recently installed at the LBT named Lili provides spatially resolved spectra of each binary component, indicating similar spectral types and strengthening the case for companionship. Studying the multiplicity of young runaway star systems like 2 Cygni (36.6 ± 0.5 Myr) can help to understand formation mechanisms for stars that exhibit anomalous velocities through the Galaxy. This on-sky demonstration illustrates the spatial resolution of the iLocater SX acquisition camera working in tandem with the LBT AO system; it further derisks a number of technical hurdles involved in combining AO with Doppler spectroscopy.  more » « less
Award ID(s):
2108603
PAR ID:
10630509
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
The Astronomical Journal
Date Published:
Journal Name:
The Astronomical Journal
Volume:
169
Issue:
1
ISSN:
0004-6256
Page Range / eLocation ID:
48
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Enabling efficient injection of light into single-mode fibres (SMFs) is a key requirement in realizing diffraction-limited astronomical spectroscopy on ground-based telescopes. SMF-fed spectrographs, facilitated by the use of adaptive optics (AO), offer distinct advantages over comparable seeing-limited designs, including higher spectral resolution within a compact and stable instrument volume, and a telescope independent spectrograph design. iLocater is an extremely precise radial velocity (EPRV) spectrograph being built for the Large Binocular Telescope (LBT). We have designed and built the front-end fibre injection system, or acquisition camera, for the SX (left) primary mirror of the LBT. The instrument was installed in 2019 and underwent on-sky commissioning and performance assessment. In this paper, we present the instrument requirements, acquisition camera design, as well as results from first-light measurements. Broad-band SMF coupling in excess of 35 per cent (absolute) in the near-infrared (0.97–1.31 $${\mu {\rm m}}$$) was achieved across a range of target magnitudes, spectral types, and observing conditions. Successful demonstration of on-sky performance represents both a major milestone in the development of iLocater and in making efficient ground-based SMF-fed astronomical instruments a reality. 
    more » « less
  2. Diffraction-limited radial-velocity instruments offer a pathway towards improved precision and stability, and the exploration of new parameter spaces at high spatial and spectral resolution. However, achieving the necessary performance requires careful instrument design and considerable on-sky testing. We describe the design and construction of ‘Little iLocater’ (Lili), a compact spectrograph that has been used to validate the performance of the front-end fibre-injection system of the iLocater spectrograph. We present the design, assembly, and performance using on-sky data obtained at the Large Binocular Telescope (LBT), including extraction of spectra from standard stars, testing of the atmospheric dispersion corrector to elevations of 40°, and spatially resolved spectra from close companion systems. These results show the front-end fibre-injection system is performing as expected and is indicative of iLocater’s capabilities once installed at the LBT. 
    more » « less
  3. Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)
    The W. M. Keck Observatory Adaptive Optics (AO) facilities have been operating with a Field Programmable Gate Array (FPGA) based real time controller (RTC) since 2007. The RTC inputs data from various AO wavefront and tip/tilt sensors; and corrects image blurring from atmospheric turbulence via deformable and tip/tilt mirrors. Since its commissioning, the Keck I and Keck II RTCs have been upgraded to support new hardware such as pyramid wavefront and infrared tip-tilt sensors. However, they are reaching the limits of their capabilities in terms of processing bandwidth and the ability to interface with new hardware. Together with the Keck All-sky Precision Adaptive optics (KAPA) project, a higher performance and a more reliable RTC is needed to support next generation capabilities such as laser tomography and sensor fusion. This paper provides an overview of the new RTC system, developed with our contractor/collaborators (Microgate, Swinburne University of Technology and Australian National University), and the initial on-sky performance. The upgrade includes an Interface Module to interface with the wavefront sensors and controlled hardware, and a Graphical Processing Unit (GPU) based computational engine to meet the system’s control requirements and to provide a flexible software architecture to allow future algorithms development and capabilities. The system saw first light in 2021 and is being commissioned in 2022 to support single conjugate laser guide star (LGS) AO, along with a more sensitive EMCCD camera. Initial results are provided to demonstrate single NGS & LGS performance, system reliability, and the planned upgrade for four LGS to support laser tomography. 
    more » « less
  4. Abstract The Hobby–Eberly Telescope (HET) Dark Energy Experiment (HETDEX) is undertaking a blind wide-field low-resolution spectroscopic survey of 540 deg2of sky to identify and derive redshifts for a million Lyα-emitting galaxies in the redshift range 1.9 <z< 3.5. The ultimate goal is to measure the expansion rate of the universe at this epoch, to sharply constrain cosmological parameters and thus the nature of dark energy. A major multiyear Wide-Field Upgrade (WFU) of the HET was completed in 2016 that substantially increased the field of view to 22′ diameter and the pupil to 10 m, by replacing the optical corrector, tracker, and Prime Focus Instrument Package and by developing a new telescope control system. The new, wide-field HET now feeds the Visible Integral-field Replicable Unit Spectrograph (VIRUS), a new low-resolution integral-field spectrograph (LRS2), and the Habitable Zone Planet Finder, a precision near-infrared radial velocity spectrograph. VIRUS consists of 156 identical spectrographs fed by almost 35,000 fibers in 78 integral-field units arrayed at the focus of the upgraded HET. VIRUS operates in a bandpass of 3500−5500 Å with resolving powerR≃ 800. VIRUS is the first example of large-scale replication applied to instrumentation in optical astronomy to achieve spectroscopic surveys of very large areas of sky. This paper presents technical details of the HET WFU and VIRUS, as flowed down from the HETDEX science requirements, along with experience from commissioning this major telescope upgrade and the innovative instrumentation suite for HETDEX. 
    more » « less
  5. Evans, Christopher J.; Bryant, Julia J.; Motohara, Kentaro (Ed.)
    NIRSPEC is a high-resolution near-infrared echelle spectrograph on the Keck II telescope that was commissioned in 1999 and upgraded in 2018. This recent upgrade was aimed at improving the sensitivity and longevity of the instrument through the replacement of the spectrometer science detector (SPEC) and slit-viewing camera (SCAM). Commissioning began in 2018 December, producing the first on-sky images used in the characterization of the upgraded system. Through the use of photometry and spectroscopy of standard stars and internal calibration lamps, we assess the performance of the upgraded SPEC and SCAM detectors. First, we evaluate the gain, readnoise, dark current, and the charge persistence of the spec detector. We then characterize the newly upgraded spectrometer and the resulting improvements in sensitivity, including spectroscopic zero points, pixel scale, and resolving power across the spectrometer detector field. Finally, for SCAM, we present zero points, pixel scale, and provide a map of the geometric distortion of the camera. 
    more » « less