skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 15, 2026

Title: Synthesis of a highly strained deep cavitand
Access to highly strained molecules remains a challenge. We report the synthesis of a bench-stable and highly strained (∼135 kcal mol−1) deep cavitand.  more » « less
Award ID(s):
2302628
PAR ID:
10630528
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Chemical Communications
ISSN:
1359-7345
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Strained rings are increasingly important for the design of pharmaceutical candidates, but cross‐coupling of strained rings remains challenging. An attractive, but underdeveloped, approach to diverse functionalized carbocyclic and heterocyclic frameworks containing all‐carbon quaternary centers is the coupling of abundant strained‐ring carboxylic acids with abundant aryl halides. Herein we disclose the development of a nickel‐catalyzed cross‐electrophile approach that couples a variety of strained ringN‐hydroxyphthalimide (NHP) esters, derived from the carboxylic acid in one step, with various aryl and heteroaryl halides under reductive conditions. The chemistry is enabled by the discovery of methods to control NHP ester reactivity, by tuning the solvent or using modified NHP esters, and the discovery thatt‐BuBpyCamCN, an L2X ligand, avoids problematic side reactions. This method can be run in flow and in 96‐well plates. 
    more » « less
  2. Alkaline anion exchange membranes (AAEMs) are an important component of alkaline exchange membrane fuel cells (AEMFCs), which facilitate the efficient conversion of fuels to electricity using nonplatinum electrode catalysts. However, low hydroxide conductivity and poor long-term alkaline stability of AAEMs are the major limitations for the widespread application of AEMFCs. In this paper, we report the synthesis of highly conductive and chemically stable AAEMs from the living polymerization oftrans-cyclooctenes. Atrans-cyclooctene–fused imidazolium monomer was designed and synthesized on gram scale. Using these highly ring-strained monomers, we produced a range of block and random copolymers. Surprisingly, AAEMs made from the random copolymer exhibited much higher conductivities than their block copolymer analogs. Investigation by transmission electron microscopy showed that the block copolymers had a disordered microphase segregation which likely impeded ion conduction. A cross-linked random copolymer demonstrated a high level of hydroxide conductivity (134 mS/cm at 80 °C). More importantly, the membranes exhibited excellent chemical stability due to the incorporation of highly alkaline-stable multisubstituted imidazolium cations. No chemical degradation was detected by1H NMR spectroscopy when the polymers were treated with 2 M KOH in CD3OH at 80 °C for 30 d. 
    more » « less
  3. The conversion of macrocyclic 1,4-diketones to highly strained para-phenylene rings has recently been reported by our laboratory. This synthetic strategy represents a non-cross-coupling-based approach to arene-bridged macrocycles, and an alternative to palladium- and nickel-mediated processes. In this Synpacts article we discuss the development of endgame aromatization protocols for the synthesis of increasingly strained arene systems, as well as potential advantages of the macrocyclic 1,4-diketone approach to selectively functionalized benzenoid macrocycles for future complexity building reactions. 1 Introduction 2 A Non-Cross-Coupling-Based Approach to Arene-Bridged Macro cycles 3 Macrocyclic 1,4-Diketones: Streamlined Synthesis and Size-­Dependent Diastereoselective Grignard Reactions 4 Dehydrative Aromatization Reactions: A Powerful Tool for Synthesizing Highly Strained para-Phenylene Units 5 Conclusion 
    more » « less
  4. Abstract The synthesis of structurally complex and highly strained natural products provides unique challenges and unexpected opportunities for the development of new reactions and strategies. Herein, the synthesis of (+)‐[5]‐ladderanoic acid is reported. En route to the target, unusual and unexpected strain release driven transformations were uncovered. This occurrence required a drastic revision of the synthetic design that ultimately led to the development of a novel stepwise cyclobutane assembly by an allylboration/Zweifel olefination sequence. 
    more » « less
  5. Abstract Graphene has a great potential to replace silicon in prospective semiconductor industries due to its outstanding electronic and transport properties; nonetheless, its lack of energy bandgap is a substantial limitation for practical applications. To date, straining graphene to break its lattice symmetry is perhaps the most efficient approach toward realizing bandgap tunability in graphene. However, due to the weak lattice deformation induced by uniaxial or in‐plane shear strain, most strained graphene studies have yielded bandgaps <1 eV. In this work, a modulated inhomogeneous local asymmetric elastic–plastic straining is reported that utilizes GPa‐level laser shocking at a high strain rate (dε/dt) ≈ 106–107s−1, with excellent formability, inducing tunable bandgaps in graphene of up to 2.1 eV, as determined by scanning tunneling spectroscopy. High‐resolution imaging and Raman spectroscopy reveal strain‐induced modifications to the atomic and electronic structure in graphene and first‐principles simulations predict the measured bandgap openings. Laser shock modulation of semimetallic graphene to a semiconducting material with controllable bandgap has the potential to benefit the electronic and optoelectronic industries. 
    more » « less