skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Wind Tunnel Pressure Measurements on a 1:20 TTU-WERFL Building Model Tested under Actively Generated Large-Scale Turbulent Flows:Subtitle
This dataset comprises surface pressure and 3D flow velocity data collected in a large boundary layer wind tunnel (BLWT) at the University of Florida (UF) Natural Hazard Engineering Research Infrastructure (NHERI) Experimental Facility (EF). Wind pressures were monitored on the surface of a 1:20 scale model of the Texas Tech University (TTU) Wind Engineering Research Field Laboratory (WERFL) experimental building. The TTU building model was immersed in a wide range of turbulent boundary layer flows with prescribed turbulence intensity and integral length scales. Control of large-scale turbulent scales was enabled by an active multi-fan flow control instrument system termed Flow Field Modulator (FFM). The FFM system enabled the injection of slowly varying (low frequency) turbulent gust structures to achieve significantly greater integral length scales than traditional BLWT approaches. The dataset complies with DesignSafe-CI's best practices for collection and data level curation. Additional documentation and data processing procedures applied to the data are available in the report.  more » « less
Award ID(s):
2317176
PAR ID:
10630610
Author(s) / Creator(s):
; ;
Publisher / Repository:
Designsafe-CI
Date Published:
Subject(s) / Keyword(s):
turbulence wind mitigation roof pressures low-rise building inflow condition large-scale testing Computational Fluid Dynamics (CFD) Large Eddy Simulations (LES)
Format(s):
Medium: X
Institution:
Boundary Layer Wind Tunnel - University of Florida
Sponsoring Org:
National Science Foundation
More Like this
  1. Longmire, Ellen K; Westerweel, Jerry (Ed.)
    This study leverages a novel multi-fan flow-control instrument and a mechanized roughness element grid to simulate large- and small-scale turbulent features of atmospheric flows in a large boundary layer wind tunnel (BLWT). The flow-control instrument, termed the flow field modulator (FFM), is a computer-controlled 3 m × 6 m (2D) fan array located at the University of Florida (UF) Natural Hazard Engineering Research Infrastructure (NHERI) Experimental Facility. The system comprises 319 modular hexagonal aluminum cells, each equipped with shrouded three-blade corotating propellers. The FFM enables the active generation of large-scale turbulent structures by replicating user-specified velocity time signals to inject low-frequency fluctuations into BLWT flows. In the present work, the FFM operated in conjunction with a mechanized roughness element grid, called the Terraformer, located downstream of the FFM array. The Terraformer aided in the production of near-wall turbulent mixing through precise adjustment of the height of the roughness elements. A series of BLWT velocity profile measurement experiments were carried out at the UF BLWT test section for a set of turbulence intensity and integral length scale regimes. Input commands to the FFM and Terraformer were iteratively updated via a governing convergence algorithm (GCA) to achieve user-specified mean and turbulent flow statistics. Results demonstrate the capabilities of the FFM for significantly increasing the longitudinal integral length scales compared to conventional BLWT approaches (i.e., no active large-scale turbulence generation). The study also highlights the efficacy of the GCA scheme for attaining prescribed target mean and turbulent flow conditions at the measurement location. 
    more » « less
  2. This dataset includes flow velocity time series collected in a large boundary layer wind tunnel (BLWT) to investigate the intensity of large-scale turbulent gust structures generated by a novel flow-control instrument. The work leveraged a multi-stage flow conditioning system consisting of an active multi-fan gust generator, termed flow field modulator (FFM), that operated in conjunction with an automated roughness element grid (called Terraformer). The primary goal of the study is to assess the effectiveness of the coupled flow conditioning system (FFM and Terraformer) for increasing and tuning large-scale (particularly near-surface) turbulent structures that will enable characterization of their impact on building loads at relatively large BLWT scales (1:50). The dataset can be used and compared against previously published velocity measurements collected using traditional BLWT flow conditioning approaches (i.e., no active control of large-scale turbulence). 
    more » « less
  3. This study investigates the complementary effects of side and corner modification strategies for the aerodynamic performance of tall buildings. A total of 81 doubly symmetric models were examined. High-frequency force balance (HFFB) wind tunnel testing was conducted at the University of Florida’s (UF) boundary layer wind tunnel (BLWT), an NSF-sponsored Natural Hazard Engineering Research Infrastructure (NHERI) Experimental Facility. The 81 models were examined under two approach flow conditions, which are suburban and open terrains. For each flow condition, the models were tested under 10 different wind angles from 0° to 45°. The base responses were recorded using a 6-axis load cell. A total of 1620 tests (81 models × 2 flow conditions × 10 wind angles) were performed in the BLWT at UF. Details are provided in the report document. 
    more » « less
  4. This paper explores a cyber-physical systems (CPS) approach to optimize the design of rigid, low-rise structures subjected to wind loading. The approach combines the accuracy of physical wind tunnel testing with the ability to efficiently explore a solution space using numerical optimization algorithms. The approach is fully automated, with experiments executed in a boundary layer wind tunnel (BLWT), sensor feedback monitored by a computer, and actuators used to generate physical changes to a mechatronic structural model. The approach was demonstrated for a low-rise structure with a parapet wall of variable height. A non-stochastic optimization algorithm was implemented to search along the domain of parapet heights to minimize both positive and negative pressures on the roof a of a 1:18 length scale low-rise building model. Experiments were conducted at the University of Florida Experimental Facility (UFEF) of the National Science Foundation’s (NSF) Natural Hazard Engineering Research Infrastructure (NHERI) program. 
    more » « less
  5. ABSTRACT: This paper explores the use of cyber-physical systems (CPS) for optimal design in wind engineering. The approach combines the accuracy of physical wind tunnel testing with the ability to efficiently explore a solution space using numerical optimization algorithms. The approach is fully automated, with experiments executed in a boundary layer wind tunnel (BLWT), sensor feedback monitored by a high-performance computer, and actuators used to bring about physical changes in the BLWT. Because the model is undergoing physical change as it approaches the optimal solution, this approach is given the name “loop-in-the-model” testing. The building selected for this study is a low-rise structure with a parapet wall of variable height. Parapet walls alter the location of the roof corner vortices, alleviating large suction loads on the windward facing roof corner and edges and setting up an interesting optimal design problem. In the BLWT, the model parapet height is adjusted using servo-motors to achieve a particular design. The model surface is instrumented with pressure taps to measure the envelope pressure loading. The taps are densely spaced on the roof to provide sufficient resolution to capture the change in roof corner vortex formation. Experiments are conducted using a boundary BLWT located at the University of Florida Natural Hazard Engineering Research Infrastructure (NHERI) Experimental Facility. The proposed CPS approach enables the optimal solution to be found quicker than brute force methods, in particular for complex structures with many design variables. The parapet wall provides a proof-of-concept study with a single design variable that has a non-monotonic influence on a structure’s wind load. This study focuses on envelope load effects, seeking the parapet height that minimizes roof and parapet wall suction loading. Implications are significant for more complex structures where the optimal solution may not be obvious and cannot be reasonably determined with traditional experimental or computational methods. KEYWORDS: Cyber-physical systems, optimization, boundary-layer wind tunnel, parapet wall, NHERI 
    more » « less