skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: GreedyML: A Parallel Algorithm for Maximizing Constrained Submodular Functions
We describe a parallel approximation algorithm for maximizing monotone submodular functions subject to hereditary constraints on distributed memory multiprocessors. Our work is motivated by the need to solve submodular optimization problems on massive data sets, for practical contexts such as data summarization, machine learning, and graph sparsification. Our work builds on the randomized distributed RandGreeDI algorithm, proposed by Barbosa, Ene, Nguyen, and Ward (2015). This algorithm computes a distributed solution by randomly partitioning the data among all the processors and then employing a single accumulation step in which all processors send their partial solutions to one processor. However, for large problems, the accumulation step exceeds the memory available on a processor, and the processor which performs the accumulation becomes a computational bottleneck. Hence we propose a generalization of the RandGreeDI algorithm that employs multiple accumulation steps to reduce the memory required. We analyze the approximation ratio and the time complexity of the algorithm (in the BSP model). We evaluate the new GreedyML algorithm on three classes of problems, and report results from large-scale data sets with millions of elements. The results show that the GreedyML algorithm can solve problems where the sequential Greedy and distributed RandGreeDI algorithms fail due to memory constraints. For certain computationally intensive problems, the GreedyML algorithm is faster than the RandGreeDI algorithm. The observed approximation quality of the solutions computed by the GreedyML algorithm closely matches those obtained by the RandGreeDI algorithm on these problems.  more » « less
Award ID(s):
2055605 2327981
PAR ID:
10630669
Author(s) / Creator(s):
; ; ;
Editor(s):
Mutzel, Petra; Prezza, Nicola
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
338
ISSN:
1868-8969
ISBN:
978-3-95977-375-1
Page Range / eLocation ID:
19:1-19:21
Subject(s) / Keyword(s):
Combinatorial optimization submodular functions distributed algorithms approximation algorithms data summarization Computing methodologies → Distributed algorithms Theory of computation → Distributed algorithms Theory of computation → Facility location and clustering Theory of computation → Packing and covering problems Theory of computation → Nearest neighbor algorithms Theory of computation → Divide and conquer Theory of computation → Sparsification and spanners Theory of computation → Discrete optimization Computing methodologies → Feature selection
Format(s):
Medium: X Size: 21 pages; 1597453 bytes Other: application/pdf
Size(s):
21 pages 1597453 bytes
Right(s):
Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
Sponsoring Org:
National Science Foundation
More Like this
  1. Bender, M.; Gilbert, J.; Hendrickson, B.; Sullivan, B. (Ed.)
    We design new serial and parallel approximation algorithms for computing a maximum weight b-matching in an edge-weighted graph with a submodular objective function. This problem is NP-hard; the new algorithms have approximation ratio 1/3, and are relaxations of the Greedy algorithm that rely only on local information in the graph, making them parallelizable. We have designed and implemented Local Lazy Greedy algorithms for both serial and parallel computers. We have applied the approximate submodular b-matching algorithm to assign tasks to processors in the computation of Fock matrices in quantum chemistry on parallel computers. The assignment seeks to reduce the run time by balancing the computational load on the processors and bounding the number of messages that each processor sends. We show that the new assignment of tasks to processors provides a four fold speedup over the currently used assignment in the NWChemEx software on 8000 processors on the Summit supercomputer at Oak Ridge National Lab. 
    more » « less
  2. Constrained submodular function maximization has been used in subset selection problems such as selection of most informative sensor locations. While these models have been quite popular, the solutions obtained via this approach are unstable to perturbations in data defining the submodular functions. Robust submodular maximization has been proposed as a richer model that aims to overcome this discrepancy as well as increase the modeling scope of submodular optimization. In this work, we consider robust submodular maximization with structured combinatorial constraints and give efficient algorithms with provable guarantees. Our approach is applicable to constraints defined by single or multiple matroids, knapsack as well as distributionally robust criteria. We consider both the offline setting where the data defining the problem is known in advance as well as the online setting where the input data is revealed over time. For the offline setting, we give a nearly optimal bi-criteria approximation algorithm that relies on new extensions of the classical greedy algorithm. For the online version of the problem, we give an algorithm that returns a bi-criteria solution with sub-linear regret. 
    more » « less
  3. Constrained submodular function maximization has been used in subset selection problems such as selection of most informative sensor locations. Although these models have been quite popular, the solutions obtained via this approach are unstable to perturbations in data defining the submodular functions. Robust submodular maximization has been proposed as a richer model that aims to overcome this discrepancy as well as increase the modeling scope of submodular optimization. In this work, we consider robust submodular maximization with structured combinatorial constraints and give efficient algorithms with provable guarantees. Our approach is applicable to constraints defined by single or multiple matroids and knapsack as well as distributionally robust criteria. We consider both the offline setting where the data defining the problem are known in advance and the online setting where the input data are revealed over time. For the offline setting, we give a general (nearly) optimal bicriteria approximation algorithm that relies on new extensions of classical algorithms for submodular maximization. For the online version of the problem, we give an algorithm that returns a bicriteria solution with sublinear regret. Summary of Contribution: Constrained submodular maximization is one of the core areas in combinatorial optimization with a wide variety of applications in operations research and computer science. Over the last decades, both communities have been interested on the design and analysis of new algorithms with provable guarantees. Sensor location, influence maximization and data summarization are some of the applications of submodular optimization that lie at the intersection of the aforementioned communities. Particularly, our work focuses on optimizing several submodular functions simultaneously. We provide new insights and algorithms to the offline and online variants of the problem which significantly expand the related literature. At the same time, we provide a computational study that supports our theoretical results. 
    more » « less
  4. Evans, Robin; Shpitser, Ilya (Ed.)
    We consider the problem of maximizing submodular functions under submodular constraints by formulating the problem in two ways: \SCSKC and \DiffC. Given two submodular functions $$f$$ and $$g$$ where $$f$$ is monotone, the objective of \SCSKC problem is to find a set $$S$$ of size at most $$k$$ that maximizes $f(S)$ under the constraint that $$g(S)\leq \theta$$, for a given value of $$\theta$$. The problem of \DiffC focuses on finding a set $$S$$ of size at most $$k$$ such that $h(S) = f(S)-g(S)$$ is maximized. It is known that these problems are highly inapproximable and do not admit any constant factor multiplicative approximation algorithms unless NP is easy. Known approximation algorithms involve data-dependent approximation factors that are not efficiently computable. We initiate a study of the design of approximation algorithms where the approximation factors are efficiently computable. For the problem of \SCSKC, we prove that the greedy algorithm produces a solution whose value is at least $$(1-1/e)f(\OPT) - A$, where $$A$$ is the data-dependent additive error. For the \DiffC problem, we design an algorithm that uses the \SCSKC greedy algorithm as a subroutine. This algorithm produces a solution whose value is at least $$(1-1/e)h(\OPT)-B$, where $$B$$ is also a data-dependent additive error. A salient feature of our approach is that the additive error terms can be computed efficiently, thus enabling us to ascertain the quality of the solutions produced. 
    more » « less
  5. null (Ed.)
    We consider the problem of low-rank approximation of massive dense nonnegative tensor data, for example, to discover latent patterns in video and imaging applications. As the size of data sets grows, single workstations are hitting bottlenecks in both computation time and available memory. We propose a distributed-memory parallel computing solution to handle massive data sets, loading the input data across the memories of multiple nodes, and performing efficient and scalable parallel algorithms to compute the low-rank approximation. We present a software package called Parallel Low-rank Approximation with Nonnegativity Constraints, which implements our solution and allows for extension in terms of data (dense or sparse, matrices or tensors of any order), algorithm (e.g., from multiplicative updating techniques to alternating direction method of multipliers), and architecture (we exploit GPUs to accelerate the computation in this work). We describe our parallel distributions and algorithms, which are careful to avoid unnecessary communication and computation, show how to extend the software to include new algorithms and/or constraints, and report efficiency and scalability results for both synthetic and real-world data sets. 
    more » « less