skip to main content

Title: Structured Robust Submodular Maximization: Offline and Online Algorithms
Constrained submodular function maximization has been used in subset selection problems such as selection of most informative sensor locations. Although these models have been quite popular, the solutions obtained via this approach are unstable to perturbations in data defining the submodular functions. Robust submodular maximization has been proposed as a richer model that aims to overcome this discrepancy as well as increase the modeling scope of submodular optimization. In this work, we consider robust submodular maximization with structured combinatorial constraints and give efficient algorithms with provable guarantees. Our approach is applicable to constraints defined by single or multiple matroids and knapsack as well as distributionally robust criteria. We consider both the offline setting where the data defining the problem are known in advance and the online setting where the input data are revealed over time. For the offline setting, we give a general (nearly) optimal bicriteria approximation algorithm that relies on new extensions of classical algorithms for submodular maximization. For the online version of the problem, we give an algorithm that returns a bicriteria solution with sublinear regret. Summary of Contribution: Constrained submodular maximization is one of the core areas in combinatorial optimization with a wide variety of applications in more » operations research and computer science. Over the last decades, both communities have been interested on the design and analysis of new algorithms with provable guarantees. Sensor location, influence maximization and data summarization are some of the applications of submodular optimization that lie at the intersection of the aforementioned communities. Particularly, our work focuses on optimizing several submodular functions simultaneously. We provide new insights and algorithms to the offline and online variants of the problem which significantly expand the related literature. At the same time, we provide a computational study that supports our theoretical results. « less
Authors:
; ;  ; ;  ;
Award ID(s):
1717947
Publication Date:
NSF-PAR ID:
10303944
Journal Name:
INFORMS Journal on Computing
Volume:
33
Issue:
4
ISSN:
1091-9856
Sponsoring Org:
National Science Foundation
More Like this
  1. Constrained submodular function maximization has been used in subset selection problems such as selection of most informative sensor locations. While these models have been quite popular, the solutions obtained via this approach are unstable to perturbations in data defining the submodular functions. Robust submodular maximization has been proposed as a richer model that aims to overcome this discrepancy as well as increase the modeling scope of submodular optimization. In this work, we consider robust submodular maximization with structured combinatorial constraints and give efficient algorithms with provable guarantees. Our approach is applicable to constraints defined by single or multiple matroids, knapsack as well as distributionally robust criteria. We consider both the offline setting where the data defining the problem is known in advance as well as the online setting where the input data is revealed over time. For the offline setting, we give a nearly optimal bi-criteria approximation algorithm that relies on new extensions of the classical greedy algorithm. For the online version of the problem, we give an algorithm that returns a bi-criteria solution with sub-linear regret.
  2. In the classical selection problem, the input consists of a collection of elements and the goal is to pick a subset of elements from the collection such that some objective function f is maximized. This problem has been studied extensively in the data-mining community and it has multiple applications including influence maximization in social networks, team formation and recommender systems. A particularly popular formulation that captures the needs of many such applications is one where the objective function f is a monotone and non-negative submodular function. In these cases, the corresponding computational problem can be solved using a simple greedy (1- 1/e)-approximation algorithm. In this paper, we consider a generalization of the above formulation where the goal is to optimize a function that maximizes the submodular function f minus a linear cost function c. This formulation appears as a more natural one, particularly when one needs to strike a balance between the value of the objective function and the cost being paid in order to pick the selected elements. We address variants of this problem both in an offline setting, where the collection is known apriori, as well as in online settings, where the elements of the collection arrive inmore »an online fashion. We demonstrate that by using simple variants of the standard greedy algorithm (used for submodular optimization) we can design algorithms that have provable approximation guarantees, are extremely efficient and work very well in practice.« less
  3. We consider the problem of subset selection in the online setting, where data arrive incrementally. Instead of storing and running subset selection on the entire dataset, we propose an incremental subset selection framework that, at each time instant, uses the previously selected set of representatives and the new batch of data in order to update the set of representatives. We cast the problem as an integer bi- nary optimization minimizing the encoding cost of the data via representatives regularized by the number of selected items. As the proposed optimization is, in general, NP-hard and non-convex, we study a greedy approach based on un- constrained submodular optimization and also propose an efficient convex relaxation. We show that, under appropriate conditions, the solution of our proposed convex algorithm achieves the global optimal solution of the non-convex problem. Our results also address the conventional problem of subset selection in the offline setting, as a special case. By extensive experiments on the problem of video summarization, we demonstrate that our proposed online subset selection algorithms perform well on real data, capturing diverse representative events in videos, while they obtain objective function values close to the offline setting.
  4. We consider the problem of subset selection in the online setting, where data arrive incrementally. Instead of storing and running subset selection on the entire dataset, we propose an incremental subset selection framework that, at each time instant, uses the previously selected set of representatives and the new batch of data in order to update the set of representatives. We cast the problem as an integer binary optimization minimizing the encoding cost of the data via representatives regularized by the number of selected items. As the proposed optimization is, in general, NP-hard and non-convex, we study a greedy approach based on unconstrained submodular optimization and also propose an efficient convex relaxation. We show that, under appropriate conditions, the solution of our proposed convex algorithm achieves the global optimal solution of the non-convex problem. Our results also address the conventional problem of subset selection in the offline setting, as a special case. By extensive experiments on the problem of video summarization, we demonstrate that our proposed online subset selection algorithms perform well on real data, capturing diverse representative events in videos, while they obtain objective function values close to the offline setting.
  5. We study the problem of differentially private constrained maximization of decomposable submodular functions. A submodular function is decomposable if it takes the form of a sum of submodular functions. The special case of maximizing a monotone, decomposable submodular function under cardinality constraints is known as the Combinatorial Public Projects (CPP) problem (Papadimitriou, Schapira, and Singer 2008). Previous work by Gupta et al. (2010) gave a differentially private algorithm for the CPP problem. We extend this work by designing differentially private algorithms for both monotone and non-monotone decomposable submodular maximization under general matroid constraints, with competitive utility guarantees. We complement our theoretical bounds with experiments demonstrating improved empirical performance.