Abstract Propagation of high‐frequency (HF) radio signals is strongly dependent on the ionospheric electron density structure along a communications link. The ground‐based, HF space weather radars of the Super Dual Auroral Radar Network (SuperDARN) utilize the ionospheric refraction of transmitted signals to monitor the global circulation ofE‐ andF‐region plasma irregularities. Previous studies have assessed the propagation characteristics of backscatter echoes from ionospheric irregularities in the auroral and polar regions of the Earth's ionosphere. By default, the geographic location of these echoes are found using empirical models which estimate the virtual backscattering height from the measured range along the radar signal path. However, the performance of these virtual height models has not yet been evaluated for mid‐latitude SuperDARN radar observations or for ground scatter (GS) propagation modes. In this study, we derive a virtual height model suitable for mid‐latitude SuperDARN observations using 5 years of data from the Christmas Valley East and West radars. This empirical model can be applied to both ionospheric and GS observations and provides an improved estimate of the ground range to the backscatter location compared to existing high‐latitude virtual height models. We also identify a region of overlapping half‐hopF‐region ionospheric scatter and one‐hopE‐region GS where the measured radar parameters (e.g., velocity, spectral width, elevation angle) are insufficient to discriminate between the two scatter types. Further studies are required to determine whether these backscatter echoes of ambiguous origin are observed by other mid‐latitude SuperDARN radars and their potential impact on scatter classification schemes.
more »
« less
This content will become publicly available on February 1, 2026
A 3‐D FDTD Methodology for Modeling the Propagation of VLF Whistler Mode PLHR Waves Through the Ionosphere
Abstract The finite‐difference time‐domain (FDTD) method was previously applied to high‐frequency electromagnetic wave propagation through 250 km of theFregion of the ionosphere. That modeling approach was limited to electromagnetic wave propagation above the critical frequency of the ionospheric plasma, and it did not include the lower ionosphere layers or the top of theF‐region. This paper extends the previous modeling methodology to frequencies below the critical frequency of the plasma and to altitudes encompassing the ionosphere. The following changes to the previous work were required to generate this model: (a) theD,Eand top of theFregions of the ionosphere were added; and (b) the perfectly matched layer absorbing boundary on the top side of the grid was replaced with a collisional plasma to prevent reflections. We apply this model to the study of extremely low frequency (ELF) and very low frequency (VLF) electric power line harmonic radiation (PLHR) through the ionosphere. The model is compared against analytical predictions and applied to PLHR propagation in polar, mid‐latitude and equatorial regions. Also, to further demonstrate the advantages of the grid‐based FDTD method, PLHR propagation through a polar cap patch with inhomogeneities is studied. The presented modeling methodology may be applied to additional scenarios in a straightforward manner and can serve as a useful tool for better tracking and studying electromagnetic wave propagation through the ionosphere at any latitude and in the presence of irregularities of any size and shape.
more »
« less
- Award ID(s):
- 2434336
- PAR ID:
- 10630935
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 130
- Issue:
- 2
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this study, we use the observations of electromagnetic waves by Detection of Electromagnetic Emissions Transmitted from Earthquake Regions satellite to investigate propagation characteristics of low‐altitude ionospheric hiss. In an event study, intense hiss wave power is concentrated over a narrow frequency band with a central frequency that decreases as latitude decreases, which coincides to the variation of local proton cyclotron frequencyfCH. The wave propagates obliquely to the background magnetic field and equatorward from high latitude region. We use about ∼6 years of observations to statistically study the dependence of ionospheric hiss wave power on location, local time, geomagnetic activity, and season. The results demonstrate that the ionospheric hiss power is stronger on the dayside than nightside, under higher geomagnetic activity conditions, in local summer than local winter. The wave power is confined near the region where the localfCHis equal to the wave frequency. A ray tracing simulation is performed to account for the dependence of wave power on frequency and latitude.more » « less
-
We present FARR (Finite-difference time-domain ARRay), an open source, high-performance, finite-difference time-domain (FDTD) code. FARR is specifically designed for modeling radio wave propagation in collisional, magnetized plasmas like those found in the Earth’s ionosphere. The FDTD method directly solves Maxwell’s equations and captures all features of electromagnetic propagation, including the effects of polarization and finite-bandwidth wave packets. By solving for all vector field quantities, the code can work in regimes where geometric optics is not applicable. FARR is able to model the complex interaction of electromagnetic waves with multi-scale ionospheric irregularities, capturing the effects of scintillation caused by both refractive and diffractive processes. In this paper, we provide a thorough description of the design and features of FARR. We also highlight specific use cases for future work, including coupling to external models for ionospheric densities, quantifying HF/VHF scintillation, and simulating radar backscatter. The code is validated by comparing the simulated wave amplitudes in a slowly changing, magnetized plasma to the predicted amplitudes using the WKB approximation. This test shows good agreement between FARR and the cold plasma dispersion relations for O, X, R, and L modes, while also highlighting key differences from working in the time-domain. Finally, we conclude by comparing the propagation path of an HF pulse reflecting from the bottomside ionosphere. This path compares well to ray tracing simulations, and demonstrates the code’s ability to address realistic ionospheric propagation problems.more » « less
-
Abstract Sudden enhancement in high‐frequency absorption is a well‐known impact of solar flare‐driven Short‐Wave Fadeout (SWF). Less understood, is a perturbation of the radio wave frequency as it traverses the ionosphere in the early stages of SWF, also known as the Doppler flash. Investigations have suggested two possible sources that might contribute to it’s manifestation: first, enhancements of plasma density in the D‐and lower E‐regions; second, the lowering of the F‐region reflection point. Our recent work investigated a solar flare event using first principles modeling and Super Dual Auroral Radar Network (SuperDARN) HF radar observations and found that change in the F‐region refractive index is the primary driver of the Doppler flash. This study analyzes multiple solar flare events observed across different SuperDARN HF radars to determine how flare characteristics, properties of the traveling radio wave, and geophysical conditions impact the Doppler flash. In addition, we use incoherent scatter radar data and first‐principles modeling to investigate physical mechanisms that drive the lowering of the F‐region reflection points. We found, (a) on average, the change in E‐ and F‐region refractive index is the primary driver of the Doppler flash, (b) solar zenith angle, ray’s elevation angle, operating frequency, and location of the solar flare on the solar disk can alter the ionospheric regions of maximum contribution to the Doppler flash, (c) increased ionospheric Hall and Pedersen conductance causes a reduction of the daytime eastward electric field, and consequently reduces the vertical ion‐drift in the lower and middle latitude ionosphere, which results in lowering of the F‐region ray reflection point.more » « less
-
Electromagnetic ion cyclotron (EMIC) waves can scatter radiation belt electrons with energies of a few hundred keV and higher. To accurately predict this scattering and the resulting precipitation of these relativistic electrons on short time scales, we need detailed knowledge of the wave field’s spatio-temporal evolution, which cannot be obtained from single spacecraft measurements. Our study presents EMIC wave models obtained from two-dimensional (2D) finite-difference time-domain (FDTD) simulations in the Earth’s dipole magnetic field. We study cases of hydrogen band and helium band wave propagation, rising-tone emissions, packets with amplitude modulations, and ducted waves. We analyze the wave propagation properties in the time domain, enabling comparison within situobservations. We show that cold plasma density gradients can keep the wave vector quasiparallel, guide the wave energy efficiently, and have a profound effect on mode conversion and reflections. The wave normal angle of unducted waves increases rapidly with latitude, resulting in reflection on the ion hybrid frequency, which prohibits propagation to low altitudes. The modeled wave fields can serve as an input for test-particle analysis of scattering and precipitation of relativistic electrons and energetic ions.more » « less
An official website of the United States government
