skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 4, 2026

Title: An open source code for modeling radio wave propagation in earth’s ionosphere
We present FARR (Finite-difference time-domain ARRay), an open source, high-performance, finite-difference time-domain (FDTD) code. FARR is specifically designed for modeling radio wave propagation in collisional, magnetized plasmas like those found in the Earth’s ionosphere. The FDTD method directly solves Maxwell’s equations and captures all features of electromagnetic propagation, including the effects of polarization and finite-bandwidth wave packets. By solving for all vector field quantities, the code can work in regimes where geometric optics is not applicable. FARR is able to model the complex interaction of electromagnetic waves with multi-scale ionospheric irregularities, capturing the effects of scintillation caused by both refractive and diffractive processes. In this paper, we provide a thorough description of the design and features of FARR. We also highlight specific use cases for future work, including coupling to external models for ionospheric densities, quantifying HF/VHF scintillation, and simulating radar backscatter. The code is validated by comparing the simulated wave amplitudes in a slowly changing, magnetized plasma to the predicted amplitudes using the WKB approximation. This test shows good agreement between FARR and the cold plasma dispersion relations for O, X, R, and L modes, while also highlighting key differences from working in the time-domain. Finally, we conclude by comparing the propagation path of an HF pulse reflecting from the bottomside ionosphere. This path compares well to ray tracing simulations, and demonstrates the code’s ability to address realistic ionospheric propagation problems.  more » « less
Award ID(s):
2301644
PAR ID:
10584935
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Volume:
12
ISSN:
2296-987X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The finite‐difference time‐domain (FDTD) method was previously applied to high‐frequency electromagnetic wave propagation through 250 km of theFregion of the ionosphere. That modeling approach was limited to electromagnetic wave propagation above the critical frequency of the ionospheric plasma, and it did not include the lower ionosphere layers or the top of theF‐region. This paper extends the previous modeling methodology to frequencies below the critical frequency of the plasma and to altitudes encompassing the ionosphere. The following changes to the previous work were required to generate this model: (a) theD,Eand top of theFregions of the ionosphere were added; and (b) the perfectly matched layer absorbing boundary on the top side of the grid was replaced with a collisional plasma to prevent reflections. We apply this model to the study of extremely low frequency (ELF) and very low frequency (VLF) electric power line harmonic radiation (PLHR) through the ionosphere. The model is compared against analytical predictions and applied to PLHR propagation in polar, mid‐latitude and equatorial regions. Also, to further demonstrate the advantages of the grid‐based FDTD method, PLHR propagation through a polar cap patch with inhomogeneities is studied. The presented modeling methodology may be applied to additional scenarios in a straightforward manner and can serve as a useful tool for better tracking and studying electromagnetic wave propagation through the ionosphere at any latitude and in the presence of irregularities of any size and shape. 
    more » « less
  2. Electromagnetic ion cyclotron (EMIC) waves can scatter radiation belt electrons with energies of a few hundred keV and higher. To accurately predict this scattering and the resulting precipitation of these relativistic electrons on short time scales, we need detailed knowledge of the wave field’s spatio-temporal evolution, which cannot be obtained from single spacecraft measurements. Our study presents EMIC wave models obtained from two-dimensional (2D) finite-difference time-domain (FDTD) simulations in the Earth’s dipole magnetic field. We study cases of hydrogen band and helium band wave propagation, rising-tone emissions, packets with amplitude modulations, and ducted waves. We analyze the wave propagation properties in the time domain, enabling comparison within situobservations. We show that cold plasma density gradients can keep the wave vector quasiparallel, guide the wave energy efficiently, and have a profound effect on mode conversion and reflections. The wave normal angle of unducted waves increases rapidly with latitude, resulting in reflection on the ion hybrid frequency, which prohibits propagation to low altitudes. The modeled wave fields can serve as an input for test-particle analysis of scattering and precipitation of relativistic electrons and energetic ions. 
    more » « less
  3. null (Ed.)
    The historical record indicates the possibility of intense coronal mass ejections (CMEs). Energized particles and magnetic fields ejected by coronal mass ejections (CMEs) towards the Earth may disrupt the Earth’s magnetosphere and generate a geomagnetic storm. During a geomagnetic storm, the induced geoelectric field can drive geomagnetically-induced currents (GICs) that flow through ground-based conductors. These GICs have the potential to damage high voltage power transmission systems and cause blackouts. As part of the NSF-funded Comprehensive Hazard Analysis for Resilience to Geomagnetic Extreme Disturbances (CHARGED) project, a solar-wind-to-lithosphere numerical model of the geoelectric field is being developed. The purpose of this new tool is to drive a new generation of GIC forecasting. As a part of that work, Maxwell’s equations, finite-difference time-domain (FDTD) models of the last stage of the Sun-to-Earth propagation path is being coupled to output generated by the Block Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) magnetohydrodynamics model and the Ridley Ionosphere Model (RIM) of ionospheric dynamics. Specifically, three-dimensional (3-D) BATS-R-US and RIM-predicted ionospheric currents occurring in the lower ionosphere during and around the time of the March 17, 2015 storm are modeled in 3-D FDTD models of North America. These models start at a depth of 150 km, and they account for ionospheric currents occurring up to an altitude of 115 km. The resolution of the FDTD models is 22 km (East-West) x 11 km (North-South) x 5 km (radially), and they account for 3-D lithosphere conductivities provided by the U.S. Geological Survey. The FDTD-calculated results are compared with surface magnetic fields measured in the region by SuperMAG and INTERMAGNET magnetometers. The FDTD results are also compared with virtual magnetometer data, which calculates the perturbation of the surface magnetic field using output from the BATS-R-US magnetohydrodynamics model. Comparison plots and an analysis of the results will be provided. 
    more » « less
  4. The Finite-Difference Time-Domain (FDTD) method is a numerical modeling technique used by researchers as one of the most accurate methods to simulate the propagation of an electromagnetic wave through an object over time. Due to the nature of the method, FDTD can be computationally expensive when used in complex setting such as light propagation in highly heterogenous object such as the imaging process of tissues. In this paper, we explore a Deep Learning (DL) model that predicts the evolution of an electromagnetic field in a heterogeneous medium. In particular, modeling for propagation of a Gaussian beam in skin tissue layers. This is relevant for the characterization of microscopy imaging of tissues. Our proposed model named FDTD-net, is based on the U-net architecture, seems to perform the prediction of the electric field (EF) with good accuracy and faster when compared to the FDTD method. A dataset of different geometries was created to simulate the propagation of the electric field. The propagation of the electric field was initially generated using the traditional FDTD method. This data set was used for training and testing of the FDTD-net. The experiments show that the FDTD-net learns the physics related to the propagation of the source in the heterogeneous objects, and it can capture changes in the field due to changes in the object morphology. As a result, we present a DL model that can compute a propagated electric field in less time than the traditional method. 
    more » « less
  5. Electromagnetic (EM) scattering may be a significant source of degradation in signal and power integrity of high-contrast silicon-on-insulator (SOI) nano-scale interconnects, such as opto-electronic or optical interconnects operating at 100 s of THz where two-dimensional (2D) analytical models of dielectric slab waveguides are often used to approximate scattering loss. In this work, a formulation is presented to relate the scattering (propagation) loss to the scattering parameters (S-parameters) for the smooth waveguide; the results are correlated with results from the finite-difference time-domain (FDTD) method in 2D space. We propose a normalization factor to the previous 2D analytical formulation for the stochastic scattering loss based on physical parameters of waveguides exhibiting random surface roughness under the exponential autocorrelation function (ACF), and validate the results by comparing against numerical experiments via the 2D FDTD method, through simulation of hundreds of rough waveguides; additionally, results are compared to other 2D analytical and previous 3D experimental results. The FDTD environment is described and validated by comparing results of the smooth waveguide against analytical solutions for wave impedance, propagation constant, and S-parameters. Results show that the FDTD model is in agreement with the analytical solution for the smooth waveguide and is a reasonable approximation of the stochastic scattering loss for the rough waveguide. 
    more » « less