skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 15, 2026

Title: SPOC: Spatially-Progressing Object State Change Segmentation in Video
Object state changes in video reveal critical information about human and agent activity. However, existing methods are limited to temporal localization of when the object is in its initial state (e.g., the unchopped avocado) versus when it has completed a state change (e.g., the chopped avocado), which limits applicability for any task requiring detailed information about the progress of the actions and its spatial localization. We propose to deepen the problem by introducing the spatially-progressing object state change segmentation task. The goal is to segment at the pixel-level those regions of an object that are actionable and those that are transformed. We introduce the first model to address this task, designing a VLM-based pseudo-labeling approach, state-change dynamics constraints, and a novel WhereToChange benchmark built on in-the-wild Internet videos. Experiments on two datasets validate both the challenge of the new task as well as the promise of our model for localizing exactly where and how fast objects are changing in video. We further demonstrate useful implications for tracking activity progress to benefit robotic agents.  more » « less
Award ID(s):
2505865
PAR ID:
10631148
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
https://doi.org/10.48550/arXiv.2503.11953
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Convolutional Neural Network (CNN) based image segmentation has made great progress in recent years. However, video object segmentation remains a challenging task due to its high computational complexity. Most of the previous methods employ a two-stream CNN framework to handle spatial and motion features separately. In this paper, we propose an end-to-end encoder-decoder style 3D CNN to aggregate spatial and temporal information simultaneously for video object segmentation. To efficiently process video, we propose 3D separable convolution for the pyramid pooling module and decoder, which dramatically reduces the number of operations while maintaining the performance. Moreover, we also extend our framework to video action segmentation by adding an extra classifier to predict the action label for actors in videos. Extensive experiments on several video datasets demonstrate the superior performance of the proposed approach for action and object segmentation compared to the state-of-the-art. 
    more » « less
  2. The need for efficiently finding the video content a user wants is increasing because of the erupting of user-generated videos on the Web. Existing keyword-based or content-based video retrieval methods usually determine what occurs in a video but not when and where. In this paper, we make an answer to the question of when and where by formulating a new task, namely spatio-temporal video re-localization. Specifically, given a query video and a reference video, spatio-temporal video re-localization aims to localize tubelets in the reference video such that the tubelets semantically correspond to the query. To accurately localize the desired tubelets in the reference video, we propose a novel warp LSTM network, which propagates the spatio-temporal information for a long period and thereby captures the corresponding long-term dependencies. Another issue for spatio-temporal video re-localization is the lack of properly labeled video datasets. Therefore, we reorganize the videos in the AVA dataset to form a new dataset for spatio-temporal video re-localization research. Extensive experimental results show that the proposed model achieves superior performances over the designed baselines on the spatio-temporal video re-localization task. 
    more » « less
  3. In this research, we take an innovative approach to the Video Corpus Visual Answer Localization (VCVAL) task using the MedVidQA dataset. We expand on it by incorporating causal inference for medical videos, a novel approach in this field. By leveraging the state-of-the-art GPT-4 and Gemini Pro 1.5 models, the system aims to localize temporal segments in videos and analyze cause-effect relationships from subtitles to enhance medical decision-making. This paper extends the work from the MedVidQA challenge by introducing causality extraction to enhance the interpretability of localized video content. Subtitles are segmented to identify causal units such as cause, effect, condition, action, and signal. Prompts guide GPT-4 and Gemini Pro 1.5 in detecting and quantifying causal structures while analyzing explicit and implicit relationships, including those spanning multiple subtitle fragments. Our results reveal that both GPT-4 and Gemini Pro 1.5 perform better when handling queries individually but face challenges in batch processing for both temporal localization and causality extraction. Despite these challenges, our innovative approach has the potential to significantly advance the field of Health Informatics. In this research, we address the Video Corpus Visual Answer Localization (VCVAL) task using the MedVidQA dataset and take it a step further by integrating causal inference for medical videos. By leveraging the state-of-the-art GPT-4 and Gemini Pro 1.5 model, our system is designed to localize temporal segments in videos and analyze cause-effect relationships from subtitles to enhance medical decision-making. Our preliminary results indicate that while both models perform well for some videos, they face challenges for most, resulting in varying performance levels. The successful integration of temporal localization with causal inference can provide significant improvement for the scalability and overall performance of medical video analysis. Our work demonstrates how AI systems can uncover valuable insights from medical videos, driving significant progress in medical AI applications and potentially making significant contributions to the field. 
    more » « less
  4. Tan, Jie; Toussaint, Marc; Darvish, Kourosh (Ed.)
    Contacts play a critical role in most manipulation tasks. Robots today mainly use proximal touch/force sensors to sense contacts, but the information they provide must be calibrated and is inherently local, with practical applications relying either on extensive surface coverage or restrictive assumptions to resolve ambiguities. We propose a vision-based extrinsic contact localization task: with only a single RGB-D camera view of a robot workspace, identify when and where an object held by the robot contacts the rest of the environment. We show that careful task-attuned design is critical for a neural network trained in simulation to discover solutions that transfer well to a real robot. Our final approach im2contact demonstrates the promise of versatile general-purpose contact perception from vision alone, performing well for localizing various contact types (point, line, or planar; sticking, sliding, or rolling; single or multiple), and even under occlusions in its camera view. Video results can be found at: https://sites.google.com/view/im2contact/home 
    more » « less
  5. null (Ed.)
    The task of instance segmentation in videos aims to consistently identify objects at pixel level throughout the entire video sequence. Existing state-of-the-art methods either follow the tracking-bydetection paradigm to employ multi-stage pipelines or directly train a complex deep model to process the entire video clips as 3D volumes. However, these methods are typically slow and resourceconsuming such that they are often limited to offline processing. In this paper, we propose SRNet, a simple and efficient framework for joint segmentation and tracking of object instances in videos. The key to achieving both high efficiency and accuracy in our framework is to formulate the instance segmentation and tracking problem into a unified spatial-relation learning task where each pixel in the current frame relates to its object center, and each object center relates to its location in the previous frame. This unified learning framework allows our framework to perform join instance segmentation and tracking through a single stage while maintaining low overheads among different learning tasks. Our proposed framework can handle two different task settings and demonstrates comparable performance with state-of-the-art methods on two different benchmarks while running significantly faster. 
    more » « less