skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatio-Temporal Video Re-Localization by Warp LSTM
The need for efficiently finding the video content a user wants is increasing because of the erupting of user-generated videos on the Web. Existing keyword-based or content-based video retrieval methods usually determine what occurs in a video but not when and where. In this paper, we make an answer to the question of when and where by formulating a new task, namely spatio-temporal video re-localization. Specifically, given a query video and a reference video, spatio-temporal video re-localization aims to localize tubelets in the reference video such that the tubelets semantically correspond to the query. To accurately localize the desired tubelets in the reference video, we propose a novel warp LSTM network, which propagates the spatio-temporal information for a long period and thereby captures the corresponding long-term dependencies. Another issue for spatio-temporal video re-localization is the lack of properly labeled video datasets. Therefore, we reorganize the videos in the AVA dataset to form a new dataset for spatio-temporal video re-localization research. Extensive experimental results show that the proposed model achieves superior performances over the designed baselines on the spatio-temporal video re-localization task.  more » « less
Award ID(s):
1813709 1722847
PAR ID:
10169165
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Conference on Computer Vision and Pattern Recognition
ISSN:
2163-6648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this research, we take an innovative approach to the Video Corpus Visual Answer Localization (VCVAL) task using the MedVidQA dataset. We expand on it by incorporating causal inference for medical videos, a novel approach in this field. By leveraging the state-of-the-art GPT-4 and Gemini Pro 1.5 models, the system aims to localize temporal segments in videos and analyze cause-effect relationships from subtitles to enhance medical decision-making. This paper extends the work from the MedVidQA challenge by introducing causality extraction to enhance the interpretability of localized video content. Subtitles are segmented to identify causal units such as cause, effect, condition, action, and signal. Prompts guide GPT-4 and Gemini Pro 1.5 in detecting and quantifying causal structures while analyzing explicit and implicit relationships, including those spanning multiple subtitle fragments. Our results reveal that both GPT-4 and Gemini Pro 1.5 perform better when handling queries individually but face challenges in batch processing for both temporal localization and causality extraction. Despite these challenges, our innovative approach has the potential to significantly advance the field of Health Informatics. In this research, we address the Video Corpus Visual Answer Localization (VCVAL) task using the MedVidQA dataset and take it a step further by integrating causal inference for medical videos. By leveraging the state-of-the-art GPT-4 and Gemini Pro 1.5 model, our system is designed to localize temporal segments in videos and analyze cause-effect relationships from subtitles to enhance medical decision-making. Our preliminary results indicate that while both models perform well for some videos, they face challenges for most, resulting in varying performance levels. The successful integration of temporal localization with causal inference can provide significant improvement for the scalability and overall performance of medical video analysis. Our work demonstrates how AI systems can uncover valuable insights from medical videos, driving significant progress in medical AI applications and potentially making significant contributions to the field. 
    more » « less
  2. Understanding human behavior and activity facilitates advancement of numerous real-world applications, and is critical for video analysis. Despite the progress of action recognition algorithms in trimmed videos, the majority of real-world videos are lengthy and untrimmed with sparse segments of interest. The task of temporal activity detection in untrimmed videos aims to localize the temporal boundary of actions and classify the action categories. Temporal activity detection task has been investigated in full and limited supervision settings depending on the availability of action annotations. This paper provides an extensive overview of deep learning-based algorithms to tackle temporal action detection in untrimmed videos with different supervision levels including fully-supervised, weakly-supervised, unsupervised, self-supervised, and semi-supervised. In addition, this paper reviews advances in spatio-temporal action detection where actions are localized in both temporal and spatial dimensions. Action detection in online setting is also reviewed where the goal is to detect actions in each frame without considering any future context in a live video stream. Moreover, the commonly used action detection benchmark datasets and evaluation metrics are described, and the performance of the state-of-the-art methods are compared. Finally, real-world applications of temporal action detection in untrimmed videos and a set of future directions are discussed. 
    more » « less
  3. We propose TubeR: a simple solution for spatio-temporal video action detection. Different from existing methods that depend on either an off-line actor detector or hand-designed actor-positional hypotheses like proposals or anchors, we propose to directly detect an action tubelet in a video by simultaneously performing action localization and recognition from a single representation. TubeR learns a set of tubelet queries and utilizes a tubelet-attention module to model the dynamic spatio-temporal nature of a video clip, which effectively reinforces the model capacity compared to using actor-positional hypotheses in the spatio-temporal space. For videos containing transitional states or scene changes, we propose a context aware classification head to utilize short-term and long-term context to strengthen action classification, and an action switch regression head for detecting the precise temporal action extent. TubeR directly produces action tubelets with variable lengths and even maintains good results for long video clips. TubeR outperforms the previous state-of-the-art on commonly used action detection datasets AVA, UCF101-24 and JHMDB51-21. Code will be available on GluonCV(https://cv.gluon.ai/). 
    more » « less
  4. We introduce EQUI-VOCAL: a new system that automatically synthesizes queries over videos from limited user interactions. The user only provides a handful of positive and negative examples of what they are looking for. EQUI-VOCAL utilizes these initial examples and additional ones collected through active learning to efficiently synthesize complex user queries. Our approach enables users to find events without database expertise, with limited labeling effort, and without declarative specifications or sketches. Core to EQUI-VOCAL's design is the use of spatio-temporal scene graphs in its data model and query language and a novel query synthesis approach that works on large and noisy video data. Our system outperforms two baseline systems---in terms of F1 score, synthesis time, and robustness to noise---and can flexibly synthesize complex queries that the baselines do not support. 
    more » « less
  5. Human activities often occur in specific scene contexts, e.g. playing basketball on a basketball court. Training a model using existing video datasets thus inevitably captures and leverages such bias (instead of using the actual discriminative cues). The learned representation may not generalize well to new action classes or different tasks. In this paper, we propose to mitigate scene bias for video representation learning. Specifically, we augment the standard cross-entropy loss for action classification with 1) an adversarial loss for scene types and 2) a human mask confusion loss for videos where the human actors are masked out. These two losses encourage learning representations that are unable to predict the scene types and the correct actions when there is no evidence. We validate the effectiveness of our method by transferring our pre-trained model to three different tasks, including action classification, temporal localization, and spatio-temporal action detection. Our results show consistent improvement over the baseline model without debiasing. 
    more » « less