skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 23, 2026

Title: PerceptionLM: Open-Access Data and Models for Detailed Visual Understanding
Vision-language models are integral to computer vision research, yet many high-performing models remain closed-source, obscuring their data, design and training recipe. The research community has responded by using distillation from black-box models to label training data, achieving strong benchmark results, at the cost of measurable scientific progress. However, without knowing the details of the teacher model and its data sources, scientific progress remains difficult to measure. In this paper, we study building a Perception Language Model (PLM) in a fully open and reproducible framework for transparent research in image and video understanding. We analyze standard training pipelines without distillation from proprietary models and explore large-scale synthetic data to identify critical data gaps, particularly in detailed video understanding. To bridge these gaps, we release 2.8M human-labeled instances of fine-grained video question-answer pairs and spatio-temporally grounded video captions. Additionally, we introduce PLM-VideoBench, a suite for evaluating challenging video understanding tasks focusing on the ability to reason about "what", "where", "when", and "how" of a video. We make our work fully reproducible by providing data, training recipes, code & models.  more » « less
Award ID(s):
2505865
PAR ID:
10631152
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
https://doi.org/10.48550/arXiv.2504.13180
Date Published:
ISSN:
2504.13180
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Knowledge distillation aims at reducing model size without compromising much performance. Recent work has applied it to large vision-language (VL) Transformers, and has shown that attention maps in the multi-head attention modules of vision-language Transformers contain extensive intra-modal and cross-modal co-reference relations to be distilled. The standard approach is to apply a one-to-one attention map distillation loss, i.e. the Teacher’s first attention head instructs the Student’s first head, the second teaches the second, and so forth, but this only works when the numbers of attention heads in the Teacher and Student are the same. To remove this constraint, we propose a new Attention Map Alignment Distillation (AMAD) method for Transformers with multi-head attention, which works for a Teacher and a Student with different numbers of attention heads. Specifically, we soft-align different heads in Teacher and Student attention maps using a cosine similarity weighting. The Teacher head contributes more to the Student heads for which it has a higher similarity weight. Each Teacher head contributes to all the Student heads by minimizing the divergence between the attention activation distributions for the soft-aligned heads. No head is left behind. This distillation approach operates like cross-attention. We experiment on distilling VL-T5 and BLIP, and apply AMAD loss on their T5, BERT, and ViT sub-modules. We show, under vision-language setting, that AMAD outperforms conventional distillation methods on VQA-2.0, COCO captioning, and Multi30K translation datasets. We further show that even without VL pre-training, the distilled VL-T5 models outperform corresponding VL pre-trained VL-T5 models that are further fine-tuned by ground-truth signals, and that fine-tuning distillation can also compensate to some degree for the absence of VL pre-training for BLIP models. 
    more » « less
  2. Commonsense question answering has primarily been tackled through supervised transfer learning, where a language model pre-trained on large amounts of data is used as the starting point. While successful, the approach requires large amounts of labeled question-answer pairs, with increasingly larger amounts of data required as the complexity of scenarios or tasks such as commonsense QA increases. In this paper, we hypothesize that large-scale pre-training of language models encodes the necessary commonsense knowledge to answer common questions in context without labeled data. We propose a novel framework called Iterative Self Distillation for QA (ISD-QA), which extracts the “dark knowledge” encoded during largescale pre-training of language models to provide supervision for commonsense question answering. We show that the approach can be used to train common neural QA models for commonsense question answering by distilling knowledge from language models in an unsupervised manner. With no bells and whistles, we achieve an average of 68% of the performance of fully supervised QA models while requiring no labeled training data. Extensive experiments on three public benchmarks (OpenBookQA, HellaSWAG, and CommonsenseQA) show the effectiveness of the proposed approach. 
    more » « less
  3. null (Ed.)
    Training competitive deep video models is an order of magnitude slower than training their counterpart image models. Slow training causes long research cycles, which hinders progress in video understanding research. Following standard practice for training image models, video model training has used a fixed mini-batch shape: a specific number of clips, frames, and spatial size. However, what is the optimal shape? High resolution models perform well, but train slowly. Low resolution models train faster, but are less accurate. Inspired by multigrid methods in numerical optimization, we propose to use variable mini-batch shapes with different spatial-temporal resolutions that are varied according to a schedule. The different shapes arise from resampling the training data on multiple sampling grids. Training is accelerated by scaling up the mini-batch size and learning rate when shrinking the other dimensions. We empirically demonstrate a general and robust grid schedule that yields a significant out-of-the-box training speedup without a loss in accuracy for different models (I3D, non-local, SlowFast), datasets (Kinetics, Something-Something, Charades), and training settings (with and without pre-training, 128 GPUs or 1 GPU). As an illustrative example, the proposed multigrid method trains a ResNet-50 SlowFast network 4.5 x faster (wall-clock time, same hardware) while also improving accuracy (+ 0.8% absolute) on Kinetics-400 compared to baseline training. Code is available online. 
    more » « less
  4. While image captioning provides isolated descriptions for individual images, and video captioning offers one single narrative for an entire video clip, our work explores an important middle ground: progress-aware video captioning at the frame level. This novel task aims to generate temporally fine-grained captions that not only accurately describe each frame but also capture the subtle progression of actions throughout a video sequence. Despite the strong capabilities of existing leading vision language models, they often struggle to discern the nuances of frame-wise differences. To address this, we propose ProgressCaptioner, a captioning model designed to capture the fine-grained temporal dynamics within an action sequence. Alongside, we develop the FrameCap dataset to support training and the FrameCapEval benchmark to assess caption quality. The results demonstrate that ProgressCaptioner significantly surpasses leading captioning models, producing precise captions that accurately capture action progression and set a new standard for temporal precision in video captioning. Finally, we showcase practical applications of our approach, specifically in aiding keyframe selection and advancing video understanding, highlighting its broad utility. 
    more » « less
  5. Weakly-supervised text classification trains a classifier using the label name of each target class as the only supervision, which largely reduces human annotation efforts. Most existing methods first use the label names as static keyword-based features to generate pseudo labels, which are then used for final classifier training. While reasonable, such a commonly adopted framework suffers from two limitations: (1) keywords can have different meanings in different contexts and some text may not have any keyword, so keyword matching can induce noisy and inadequate pseudo labels; (2) the errors made in the pseudo label generation stage will directly propagate to the classifier training stage without a chance of being corrected. In this paper, we propose a new method, PIEClass, consisting of two modules: (1) a pseudo label acquisition module that uses zero-shot prompting of pre-trained language models (PLM) to get pseudo labels based on contextualized text understanding beyond static keyword matching, and (2) a noise-robust iterative ensemble training module that iteratively trains classifiers and updates pseudo labels by utilizing two PLM fine-tuning methods that regularize each other. Extensive experiments show that PIEClass achieves overall better performance than existing strong baselines on seven benchmark datasets and even achieves similar performance to fully-supervised classifiers on sentiment classification tasks. 
    more » « less