Traditional models of supervised learning require a learner, given examples from an arbitrary joint distribution on 𝑅 𝑑 × { ± 1 } R d ×{±1}, to output a hypothesis that competes (to within 𝜖 ϵ) with the best fitting concept from a class. To overcome hardness results for learning even simple concept classes, this paper introduces a smoothed-analysis framework that only requires competition with the best classifier robust to small random Gaussian perturbations. This subtle shift enables a wide array of learning results for any concept that (1) depends on a low-dimensional subspace (multi-index model) and (2) has bounded Gaussian surface area. This class includes functions of halfspaces and low-dimensional convex sets, which are only known to be learnable in non-smoothed settings with respect to highly structured distributions like Gaussians. The analysis also yields new results for traditional non-smoothed frameworks such as learning with margin. In particular, the authors present the first algorithm for agnostically learning intersections of 𝑘 k-halfspaces in time 𝑘 ⋅ poly ( log 𝑘 , 𝜖 , 𝛾 ) k⋅poly(logk,ϵ,γ), where 𝛾 γ is the margin parameter. Previously, the best-known runtime was exponential in 𝑘 k (Arriaga and Vempala, 1999).
more »
« less
This content will become publicly available on April 30, 2026
Smoothed Analysis for Learning Concepts with Low Intrinsic Dimension
In traditional models of supervised learning, the goal of a learner -- given examples from an arbitrary joint distribution on ℝd×{±1} -- is to output a hypothesis that is competitive (to within ϵ) of the best fitting concept from some class. In order to escape strong hardness results for learning even simple concept classes, we introduce a smoothed-analysis framework that requires a learner to compete only with the best classifier that is robust to small random Gaussian perturbation. This subtle change allows us to give a wide array of learning results for any concept that (1) depends on a low-dimensional subspace (aka multi-index model) and (2) has a bounded Gaussian surface area. This class includes functions of halfspaces and (low-dimensional) convex sets, cases that are only known to be learnable in non-smoothed settings with respect to highly structured distributions such as Gaussians. Surprisingly, our analysis also yields new results for traditional non-smoothed frameworks such as learning with margin. In particular, we obtain the first algorithm for agnostically learning intersections of k-halfspaces in time kpoly(logkϵγ) where γ is the margin parameter. Before our work, the best-known runtime was exponential in k (Arriaga and Vempala, 1999).
more »
« less
- Award ID(s):
- 2505865
- PAR ID:
- 10631170
- Publisher / Repository:
- https://doi.org/10.48550/arXiv.2407.00966
- Date Published:
- ISSN:
- 2407.00966
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Under Review for COLT 2024 (Ed.)In the well-studied agnostic model of learning, the goal of a learner– given examples from an arbitrary joint distribution on Rd ⇥ {±1}– is to output a hypothesis that is competitive (to within ✏) of the best fitting concept from some class. In order to escape strong hardness results for learning even simple concept classes in this model, we introduce a smoothed analysis framework where we require a learner to compete only with the best classifier that is robust to small random Gaussian perturbation. This subtle change allows us to give a wide array of learning results for any concept that (1) depends on a low-dimensional subspace (aka multi-index model) and (2) has a bounded Gaussian surface area. This class includes functions of halfspaces and (low-dimensional) convex sets, cases that are only known to be learnable in non-smoothed settings with respect to highly structured distributions such as Gaussians. Perhaps surprisingly, our analysis also yields new results for traditional non-smoothed frame- works such as learning with margin. In particular, we obtain the first algorithm for agnostically learning intersections of k-halfspaces in time kpoly( log k ✏ ) where is the margin parameter. Before our work, the best-known runtime was exponential in k (Arriaga and Vempala, 1999a).more » « less
-
In the well-studied agnostic model of learning, the goal of a learner– given examples from an arbitrary joint distribution – is to output a hypothesis that is competitive (to within 𝜖) of the best fitting concept from some class. In order to escape strong hardness results for learning even simple concept classes in this model, we introduce a smoothed analysis framework where we require a learner to compete only with the best classifier that is robust to small random Gaussian perturbation. This subtle change allows us to give a wide array of learning results for any concept that (1) depends on a low-dimensional subspace (aka multi-index model) and (2) has a bounded Gaussian surface area. This class includes functions of halfspaces and (low-dimensional) convex sets, cases that are only known to be learnable in non-smoothed settings with respect to highly structured distributions such as Gaussians. Perhaps surprisingly, our analysis also yields new results for traditional non-smoothed frameworks such as learning with margin. In particular, we obtain the first algorithm for agnostically learning intersections of 𝑘 -halfspaces in time 𝑘\poly(log𝑘𝜖𝛾) where 𝛾 is the margin parameter. Before our work, the best-known runtime was exponential in 𝑘 (Arriaga and Vempala, 1999).more » « less
-
There are many important high dimensional function classes that have fast agnostic learning algorithms when strong assumptions on the distribution of examples can be made, such as Gaussianity or uniformity over the domain. But how can one be sufficiently confident that the data indeed satisfies the distributional assumption, so that one can trust in the output quality of the agnostic learning algorithm? We propose a model by which to systematically study the design of tester-learner pairs (A,T), such that if the distribution on examples in the data passes the tester T then one can safely trust the output of the agnostic learner A on the data. To demonstrate the power of the model, we apply it to the classical problem of agnostically learning halfspaces under the standard Gaussian distribution and present a tester-learner pair with a combined run-time of nÕ(1/є4). This qualitatively matches that of the best known ordinary agnostic learning algorithms for this task. In contrast, finite sample Gaussian distribution testers do not exist for the L1 and EMD distance measures. Previously it was known that half-spaces are well-approximated with low-degree polynomials relative to the Gaussian distribution. A key step in our analysis is showing that this is the case even relative to distributions whose low-degree moments approximately match those of a Gaussian. We also go beyond spherically-symmetric distributions, and give a tester-learner pair for halfspaces under the uniform distribution on {0,1}n with combined run-time of nÕ(1/є4). This is achieved using polynomial approximation theory and critical index machinery of [Diakonikolas, Gopalan, Jaiswal, Servedio, and Viola 2009]. Can one design agnostic learning algorithms under distributional assumptions and count on future technical work to produce, as a matter of course, tester-learner pairs with similar run-time? Our answer is a resounding no, as we show there exist some well-studied settings for which 2Õ(√n) run-time agnostic learning algorithms are available, yet the combined run-times of tester-learner pairs must be as high as 2Ω(n). On that account, the design of tester-learner pairs is a research direction in its own right independent of standard agnostic learning. To be specific, our lower bounds apply to the problems of agnostically learning convex sets under the Gaussian distribution and for monotone Boolean functions under the uniform distribution over {0,1}n.more » « less
-
We revisit the fundamental problem of learning with distribution shift, in which a learner is given labeled samples from training distribution D, unlabeled samples from test distribution D′ and is asked to output a classifier with low test error. The standard approach in this setting is to bound the loss of a classifier in terms of some notion of distance between D and D′. These distances, however, seem difficult to compute and do not lead to efficient algorithms. We depart from this paradigm and define a new model called testable learning with distribution shift, where we can obtain provably efficient algorithms for certifying the performance of a classifier on a test distribution. In this model, a learner outputs a classifier with low test error whenever samples from D and D′ pass an associated test; moreover, the test must accept if the marginal of D equals the marginal of D′. We give several positive results for learning well-studied concept classes such as halfspaces, intersections of halfspaces, and decision trees when the marginal of D is Gaussian or uniform on {±1}d. Prior to our work, no efficient algorithms for these basic cases were known without strong assumptions on D′. For halfspaces in the realizable case (where there exists a halfspace consistent with both D and D′), we combine a moment-matching approach with ideas from active learning to simulate an efficient oracle for estimating disagreement regions. To extend to the non-realizable setting, we apply recent work from testable (agnostic) learning. More generally, we prove that any function class with low-degree L2-sandwiching polynomial approximators can be learned in our model. We apply constructions from the pseudorandomness literature to obtain the required approximators.more » « less
An official website of the United States government
