Abstract ObjectivesThe predictive intensive care unit (ICU) scoring system is crucial for predicting patient outcomes, particularly mortality. Traditional scoring systems rely mainly on structured clinical data from electronic health records, which can overlook important clinical information in narratives and images. Materials and MethodsIn this work, we build a deep learning-based survival prediction model that utilizes multimodality data for ICU mortality prediction. Four sets of features are investigated: (1) physiological measurements of Simplified Acute Physiology Score (SAPS) II, (2) common thorax diseases predefined by radiologists, (3) bidirectional encoder representations from transformers-based text representations, and (4) chest X-ray image features. The model was evaluated using the Medical Information Mart for Intensive Care IV dataset. ResultsOur model achieves an average C-index of 0.7829 (95% CI, 0.7620-0.8038), surpassing the baseline using only SAPS-II features, which had a C-index of 0.7470 (95% CI: 0.7263-0.7676). Ablation studies further demonstrate the contributions of incorporating predefined labels (2.00% improvement), text features (2.44% improvement), and image features (2.82% improvement). Discussion and ConclusionThe deep learning model demonstrated superior performance to traditional machine learning methods under the same feature fusion setting for ICU mortality prediction. This study highlights the potential of integrating multimodal data into deep learning models to enhance the accuracy of ICU mortality prediction.
more »
« less
An empirical study of using radiology reports and images to improve ICU-mortality prediction
The predictive Intensive Care Unit (ICU) scoring system plays an important role in ICU management for its capability of predicting important outcomes, especially mortality. There are many scoring systems that have been developed and used in the ICU. These scoring systems are primarily based on the structured clinical data contained in the electronic health record (EHR), which may suffer the loss of the important clinical information contained in the narratives and images. In this work, we build a deep learning based survival prediction model with multimodality data to predict ICU-mortality. Four sets of features are investigated: (1) physiological measurements of Simplified Acute Physiology Score (SAPS) II, (2) common thorax diseases predefined by radiologists, (3) BERT-based text representations, and (4) chest X-ray image features. We use the Medical Information Mart for Intensive Care IV (MIMIC-IV) dataset to evaluate the proposed model. Our model achieves the average C-index of 0.7847 (95% confidence interval, 0.7625–0.8068), which substantially exceeds that of the baseline with SAPS-II features (0.7477 (0.7238–0.7716)). Ablation studies further demonstrate the contributions of pre-defined labels (2.12%), text features (2.68%), and image features (2.96%). Our model achieves a higher average C-index than the traditional machine learning methods under the same feature fusion setting, which suggests that the deep learning methods can outperform the traditional machine learning methods in ICU-mortality prediction. These results highlight the potential of deep learning models with multimodal information to enhance ICU-mortality prediction. We make our work publicly available at https://github.com/bionlplab/mimic-icu-mortality.
more »
« less
- Award ID(s):
- 2505865
- PAR ID:
- 10631174
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 978-1-6654-0132-6
- Page Range / eLocation ID:
- 497 to 498
- Format(s):
- Medium: X
- Location:
- Victoria, BC, Canada
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We propose and test a novel graph learning-based explainable artificial intelligence (XAI) approach to address the challenge of developing explainable predictions of patient length of stay (LoS) in intensive care units (ICUs). Specifically, we address a notable gap in the literature on XAI methods that identify interactions between model input features to predict patient health outcomes. Our model intrinsically constructs a patient-level graph, which identifies the importance of feature interactions for prediction of health outcomes. It demonstrates state-of-the-art explanation capabilities based on identification of salient feature interactions compared with traditional XAI methods for prediction of LoS. We supplement our XAI approach with a small-scale user study, which demonstrates that our model can lead to greater user acceptance of artificial intelligence (AI) model-based decisions by contributing to greater interpretability of model predictions. Our model lays the foundation to develop interpretable, predictive tools that healthcare professionals can utilize to improve ICU resource allocation decisions and enhance the clinical relevance of AI systems in providing effective patient care. Although our primary research setting is the ICU, our graph learning model can be generalized to other healthcare contexts to accurately identify key feature interactions for prediction of other health outcomes, such as mortality, readmission risk, and hospitalizations.more » « less
-
Deep learning models have demonstrated impressive accuracy in predicting acute kidney injury (AKI), a condition affecting up to 20% of ICU patients, yet their black-box nature prevents clinical adoption in high-stakes critical care settings. While existing interpretability methods like SHAP, LIME, and attention mechanisms can identify important features, they fail to capture the temporal dynamics essential for clinical decision-making, and are unable to communicate when specific risk factors become critical in a patient's trajectory. This limitation is particularly problematic in the ICU, where the timing of interventions can significantly impact patient outcomes. We present a novel interpretable framework that brings temporal awareness to deep learning predictions for AKI. Our approach introduces three key innovations: (1) a latent convolutional concept bottleneck that learns clinically meaningful patterns from ICU time-series without requiring manual concept annotation, leveraging Conv1D layers to capture localized temporal patterns like sudden physiological changes; (2) Temporal Concept Tracing (TCT), a gradient-based method that identifies not only which risk factors matter but precisely when they become critical addressing the fundamental question of temporal relevance missing from current XAI techniques; and (3) integration with MedAlpaca to generate structured, time-aware clinical explanations that translate model insights into actionable bedside guidance. We evaluate our framework on MIMIC-IV data, demonstrating that our approach performs better than existing explainability frameworks, Occlusion and LIME, in terms of the comprehensiveness score, sufficiency score, and processing time. The proposed method also better captures risk factors inflection points for patients timelines compared to conventional concept bottleneck methods, including dense layer and attention mechanism. This work represents the first comprehensive solution for interpretable temporal deep learning in critical care that addresses both the what and when of clinical risk factors. By making AKI predictions transparent and temporally contextualized, our framework bridges the gap between model accuracy and clinical utility, offering a path toward trustworthy AI deployment in time-sensitive healthcare settings.more » « less
-
Unplanned intensive care units (ICU) readmissions and in-hospital mortality of patients are two important metrics for evaluating the quality of hospital care. Identifying patients with higher risk of readmission to ICU or of mortality can not only protect those patients from potential dangers, but also reduce the high costs of healthcare. In this work, we propose a new method to incorporate information from the Electronic Health Records (EHRs) of patients and utilize hyperbolic embeddings of a medical ontology (i.e., ICD-9) in the prediction model. The results prove the effectiveness of our method and show that hyperbolic embeddings of ontological concepts give promising performance.more » « less
-
Accurate prediction and monitoring of patient health in the intensive care unit can inform shared decisions regarding appropriateness of care delivery, risk-reduction strategies, and intensive care resource use. Traditionally, algorithmic solutions for patient outcome prediction rely solely on data available from electronic health records (EHR). In this pilot study, we explore the benefits of augmenting existing EHR data with novel measurements from wrist-worn activity sensors as part of a clinical environment known as the Intelligent ICU. We implemented temporal deep learning models based on two distinct sources of patient data: (1) routinely measured vital signs from electronic health records, and (2) activity data collected from wearable sensors. As a proxy for illness severity, our models predicted whether patients leaving the intensive care unit would be successfully or unsuccessfully discharged from the hospital. We overcome the challenge of small sample size in our prospective cohort by applying deep transfer learning using EHR data from a much larger cohort of traditional ICU patients. Our experiments quantify added utility of non-traditional measurements for predicting patient health, especially when applying a transfer learning procedure to small novel Intelligent ICU cohorts of critically ill patients.more » « less
An official website of the United States government

