Abstract ObjectivesThe predictive intensive care unit (ICU) scoring system is crucial for predicting patient outcomes, particularly mortality. Traditional scoring systems rely mainly on structured clinical data from electronic health records, which can overlook important clinical information in narratives and images. Materials and MethodsIn this work, we build a deep learning-based survival prediction model that utilizes multimodality data for ICU mortality prediction. Four sets of features are investigated: (1) physiological measurements of Simplified Acute Physiology Score (SAPS) II, (2) common thorax diseases predefined by radiologists, (3) bidirectional encoder representations from transformers-based text representations, and (4) chest X-ray image features. The model was evaluated using the Medical Information Mart for Intensive Care IV dataset. ResultsOur model achieves an average C-index of 0.7829 (95% CI, 0.7620-0.8038), surpassing the baseline using only SAPS-II features, which had a C-index of 0.7470 (95% CI: 0.7263-0.7676). Ablation studies further demonstrate the contributions of incorporating predefined labels (2.00% improvement), text features (2.44% improvement), and image features (2.82% improvement). Discussion and ConclusionThe deep learning model demonstrated superior performance to traditional machine learning methods under the same feature fusion setting for ICU mortality prediction. This study highlights the potential of integrating multimodal data into deep learning models to enhance the accuracy of ICU mortality prediction. 
                        more » 
                        « less   
                    
                            
                            An empirical study of using radiology reports and images to improve ICU-mortality prediction
                        
                    
    
            The predictive Intensive Care Unit (ICU) scoring system plays an important role in ICU management for its capability of predicting important outcomes, especially mortality. There are many scoring systems that have been developed and used in the ICU. These scoring systems are primarily based on the structured clinical data contained in the electronic health record (EHR), which may suffer the loss of the important clinical information contained in the narratives and images. In this work, we build a deep learning based survival prediction model with multimodality data to predict ICU-mortality. Four sets of features are investigated: (1) physiological measurements of Simplified Acute Physiology Score (SAPS) II, (2) common thorax diseases predefined by radiologists, (3) BERT-based text representations, and (4) chest X-ray image features. We use the Medical Information Mart for Intensive Care IV (MIMIC-IV) dataset to evaluate the proposed model. Our model achieves the average C-index of 0.7847 (95% confidence interval, 0.7625–0.8068), which substantially exceeds that of the baseline with SAPS-II features (0.7477 (0.7238–0.7716)). Ablation studies further demonstrate the contributions of pre-defined labels (2.12%), text features (2.68%), and image features (2.96%). Our model achieves a higher average C-index than the traditional machine learning methods under the same feature fusion setting, which suggests that the deep learning methods can outperform the traditional machine learning methods in ICU-mortality prediction. These results highlight the potential of deep learning models with multimodal information to enhance ICU-mortality prediction. We make our work publicly available at https://github.com/bionlplab/mimic-icu-mortality. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2505865
- PAR ID:
- 10631174
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 978-1-6654-0132-6
- Page Range / eLocation ID:
- 497 to 498
- Format(s):
- Medium: X
- Location:
- Victoria, BC, Canada
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We propose and test a novel graph learning-based explainable artificial intelligence (XAI) approach to address the challenge of developing explainable predictions of patient length of stay (LoS) in intensive care units (ICUs). Specifically, we address a notable gap in the literature on XAI methods that identify interactions between model input features to predict patient health outcomes. Our model intrinsically constructs a patient-level graph, which identifies the importance of feature interactions for prediction of health outcomes. It demonstrates state-of-the-art explanation capabilities based on identification of salient feature interactions compared with traditional XAI methods for prediction of LoS. We supplement our XAI approach with a small-scale user study, which demonstrates that our model can lead to greater user acceptance of artificial intelligence (AI) model-based decisions by contributing to greater interpretability of model predictions. Our model lays the foundation to develop interpretable, predictive tools that healthcare professionals can utilize to improve ICU resource allocation decisions and enhance the clinical relevance of AI systems in providing effective patient care. Although our primary research setting is the ICU, our graph learning model can be generalized to other healthcare contexts to accurately identify key feature interactions for prediction of other health outcomes, such as mortality, readmission risk, and hospitalizations.more » « less
- 
            Unplanned intensive care units (ICU) readmissions and in-hospital mortality of patients are two important metrics for evaluating the quality of hospital care. Identifying patients with higher risk of readmission to ICU or of mortality can not only protect those patients from potential dangers, but also reduce the high costs of healthcare. In this work, we propose a new method to incorporate information from the Electronic Health Records (EHRs) of patients and utilize hyperbolic embeddings of a medical ontology (i.e., ICD-9) in the prediction model. The results prove the effectiveness of our method and show that hyperbolic embeddings of ontological concepts give promising performance.more » « less
- 
            Accurate prediction and monitoring of patient health in the intensive care unit can inform shared decisions regarding appropriateness of care delivery, risk-reduction strategies, and intensive care resource use. Traditionally, algorithmic solutions for patient outcome prediction rely solely on data available from electronic health records (EHR). In this pilot study, we explore the benefits of augmenting existing EHR data with novel measurements from wrist-worn activity sensors as part of a clinical environment known as the Intelligent ICU. We implemented temporal deep learning models based on two distinct sources of patient data: (1) routinely measured vital signs from electronic health records, and (2) activity data collected from wearable sensors. As a proxy for illness severity, our models predicted whether patients leaving the intensive care unit would be successfully or unsuccessfully discharged from the hospital. We overcome the challenge of small sample size in our prospective cohort by applying deep transfer learning using EHR data from a much larger cohort of traditional ICU patients. Our experiments quantify added utility of non-traditional measurements for predicting patient health, especially when applying a transfer learning procedure to small novel Intelligent ICU cohorts of critically ill patients.more » « less
- 
            Abstract Traditional methods for assessing illness severity and predicting in-hospital mortality among critically ill patients require time-consuming, error-prone calculations using static variable thresholds. These methods do not capitalize on the emerging availability of streaming electronic health record data or capture time-sensitive individual physiological patterns, a critical task in the intensive care unit. We propose a novel acuity score framework (DeepSOFA) that leverages temporal measurements and interpretable deep learning models to assess illness severity at any point during an ICU stay. We compare DeepSOFA with SOFA (Sequential Organ Failure Assessment) baseline models using the same model inputs and find that at any point during an ICU admission, DeepSOFA yields significantly more accurate predictions of in-hospital mortality. A DeepSOFA model developed in a public database and validated in a single institutional cohort had a mean AUC for the entire ICU stay of 0.90 (95% CI 0.90–0.91) compared with baseline SOFA models with mean AUC 0.79 (95% CI 0.79–0.80) and 0.85 (95% CI 0.85–0.86). Deep models are well-suited to identify ICU patients in need of life-saving interventions prior to the occurrence of an unexpected adverse event and inform shared decision-making processes among patients, providers, and families regarding goals of care and optimal resource utilization.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    