Abstract We have used high resolution AFM based dynamic force spectroscopy to investigate peptide-lipid membrane interactions by measuring the detachment (last-rupture) force distribution,P(F), and the corresponding force dependent rupture rate,k(F), for two different peptides and lipid bilayers. The measured quantities, which differed considerably for different peptides, lipid-membranes, AFM tips (prepared under identical conditions), and retraction speeds of the AFM cantilever, could not be described in terms of the standard theory, according to which detachment occurs along a single pathway, corresponding to a diffusive escape process across a free energy barrier. In particular, the prominent retraction speed dependence ofk(F) was a clear indication that peptide-lipid membrane dissociation occurs stochastically along several detachment pathways. Thereby, we have formulated a general theoretical approach for describingP(F) andk(F), by assuming that peptide detachment from lipid membranes occurs, with certain probability, along a few dominant diffusive pathways. This new method was validated through a consistent interpretation of the experimental data. Furthermore, we have found that for moderate retraction speeds at intermediate force values,k(F) exhibits catch-bond behavior (i.e. decreasing detachment rate with increasing force). According to the proposed model this behavior is due to the stochastic mixing of individual detachment pathways which do not convert or cross during rupture. To our knowledge, such catch-bond mechanism has not been proposed and demonstrated before for a peptide-lipid interaction.
more »
« less
This content will become publicly available on January 23, 2026
Fully atomistic molecular dynamics modeling of photoswitchable azo-PC lipid bilayers: structure, mechanical properties, and drug permeation
A phenol molecule is shown at its free energy minimum in atransazo-PC lipid bilayer, where it interacts with the azobenzene groups that are incorporated into one of the two phosphatidylcholine lipid tails.
more »
« less
- PAR ID:
- 10631194
- Publisher / Repository:
- RSC publishing
- Date Published:
- Journal Name:
- Nanoscale
- Volume:
- 17
- Issue:
- 4
- ISSN:
- 2040-3364
- Page Range / eLocation ID:
- 2032 to 2042
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Late developmental stages of the marine copepods in the genusCalanuscan spend extended periods in a dormant stage (diapause) that is preceded by the accumulation of large lipid stores. We assessed how lipid metabolism during development from the C4 stage to adult is altered in response to predation risk and varying food availability, to ultimately understand more of the metabolic processes during development inCalanuscopepods. We used RNA sequencing to assess if perceived predation risk in combination with varied food availability affects expression of genes associated with lipid metabolism and diapause preparation inC. finmarchicus. The lipid metabolism response to predation risk differed depending on food availability, time and life stage. Predation risk caused upregulation of lipid catabolism with high food, and downregulation with low food. Under low food conditions, predation risk disrupted lipid accumulation. The copepods showed no clear signs of diapause preparation, supporting earlier observations of the importance of multiple environmental cues in inducing diapause inC. finmarchicus. This study demonstrates that lipid metabolism is a sensitive endpoint for the interacting environmental effects of predation pressure and food availability. As diapause may be controlled by lipid accumulation, our findings may contribute towards understanding processes that can ultimately influence diapause timing.more » « less
-
Gross, Richard (Ed.)Yarrowia lipolyticaexcels in microbial lipid production, thriving across diverse conditions. Batch or fed-batch fermentation is the not only common practice to achieve higher lipid titer and yield but it is also subject to lower lipid productivity. Single-stage continuous fermentation (CF) provides a great potential for significantly higher productivity, but genetic instability is often seen and challenges strain performance over the long-period CF. This study harnesses single-stage CF to not only improve lipid productivity but also evolve high-lipid mutants from a previously engineeredY. lipolyticastrain E26 via adaptive laboratory evolution (ALE) in a continuous bioreactor, guided by a predictive kinetic model. The single-stage CF was run for 1128 hours (47 days) with key process parameters adjusted in a 1-L bioreactor to produce over 150 g/L yeast biomass, exceeding the targeted 113 g/L that is predicted by the model. Compared with the fed-batch fermentation process, the single-stage CF successfully improved lipid productivity from 0.3–0.5 g/L/h to about 1 g/L/h while maintaining the lipid yield at around 0.1 g/g. The CF sample at 1008 hours was used to isolate mutants with higher lipid production after ALE in the continuous bioreactor. A mutant E26E03 was identified, which demonstrated improvements in biomass, lipid content, and lipid yield by 43%, 30%, and 51%, respectively, over the original strain E26 in fed-batch fermentation. Our study indicated that using model-guided CF with ALE in a continuous bioreactor provides a great potential for significantly higher product titer, rate, and yield in biomanufacturing.more » « less
-
The mutualistic association between plants and arbuscular mycorrhizal (AM) fungi requires intracellular accommodation of the fungal symbiont and maintenance by means of lipid provisioning. Symbiosis signaling through lysin motif (LysM) receptor-like kinases and a leucine-rich repeat receptor-like kinase DOES NOT MAKE INFECTIONS 2 (DMI2) activates transcriptional programs that underlie fungal passage through the epidermis and accommodation in cortical cells. We show that twoMedicago truncatulacortical cell–specific, membrane-bound proteins of a CYCLIN-DEPENDENT KINASE-LIKE (CKL) family associate with, and are phosphorylation substrates of, DMI2 and a subset of the LysM receptor kinases.CKL1andCKL2are required for AM symbiosis and control expression of transcription factors that regulate part of the lipid provisioning program. Onset of lipid provisioning is coupled with arbuscule branching and with the REDUCED ARBUSCULAR MYCORRHIZA 1 (RAM1) regulon for complete endosymbiont accommodation.more » « less
-
Summary The majority of plant colours are produced by anthocyanin and carotenoid pigments, but colouration obtained by nanostructured materials (i.e. structural colours) is increasingly reported in plants. Here, we identify a multilayer photonic structure in the fruits ofLantana strigocamaraand compare it with a similar structure inViburnum tinusfruits.We used a combination of transmission electron microscopy (EM), serial EM tomography, scanning force microscopy and optical simulations to characterise the photonic structure inL. strigocamara. We also examine the development of the structure during maturation.We found that the structural colour derives from a disordered, multilayered reflector consisting of lipid droplets ofc.105 nm that form a plate‐like structure in 3D. This structure begins to form early in development and reflects blue wavelengths of light with increasing intensity over time as the structure develops. The materials used are likely to be lipid polymers.Lantana strigocamarais the second origin of a lipid‐based photonic structure, convergently evolved with the structure inViburnum tinus. Chemical differences between the lipids inL. strigocamaraand those ofV. tinussuggest a distinct evolutionary trajectory with implications for the signalling function of structural colours in fruits.more » « less
An official website of the United States government
