Abstract BackgroundAll chemical forms of energy and oxygen on Earth are generated via photosynthesis where light energy is converted into redox energy by two photosystems (PS I and PS II). There is an increasing number of PS I 3D structures deposited in the Protein Data Bank (PDB). The Triangular Spatial Relationship (TSR)-based algorithm converts 3D structures into integers (TSR keys). A comprehensive study was conducted, by taking advantage of the PS I 3D structures and the TSR-based algorithm, to answer three questions: (i) Are electron cofactors including P700, A-1and A0, which are chemically identical chlorophylls, structurally different? (ii) There are two electron transfer chains (A and B branches) in PS I. Are the cofactors on both branches structurally different? (iii) Are the amino acids in cofactor binding sites structurally different from those not in cofactor binding sites? ResultsThe key contributions and important findings include: (i) a novel TSR-based method for representing 3D structures of pigments as well as for quantifying pigment structures was developed; (ii) the results revealed that the redox cofactor, P700, are structurally conserved and different from other redox factors. Similar situations were also observed for both A-1and A0; (iii) the results demonstrated structural differences between A and B branches for the redox cofactors P700, A-1, A0and A1as well as their cofactor binding sites; (iv) the tryptophan residues close to A0and A1are structurally conserved; (v) The TSR-based method outperforms the Root Mean Square Deviation (RMSD) and the Ultrafast Shape Recognition (USR) methods. ConclusionsThe structural analyses of redox cofactors and their binding sites provide a foundation for understanding the unique chemical and physical properties of each redox cofactor in PS I, which are essential for modulating the rate and direction of energy and electron transfers. 
                        more » 
                        « less   
                    This content will become publicly available on March 17, 2026
                            
                            Application of the Triangular Spatial Relationship Algorithm in Representing and Quantifying Conformational Changes in Chlorophylls and Protein Local Environments
                        
                    
    
            Chemically identical chlorophyll (Chl) molecules undergo conformational changes when they are embedded in a protein matrix. The conformational changes will modulate their absorption spectra to meet the need for programmed excitation energy transfer or electron transfer. To interpret spectroscopic data using the knowledge of pigment–protein interactions requires a single pigment embedded in one polypeptide matrix. Unfortunately, most of the known photosynthetic systems contain a set of multiple pigments in each protein subunit. This makes it complicated to interpret spectroscopic data using structural data due to the potential overlapping spectra of two or more pigments. Chl–protein interactions have not been systematically studied to answer three fundamental questions: (i) What are the structural characteristics and commonly shared substructures of different types of Chl molecules (e.g., Chl a, b, c, d, and f)? (ii) How many structural groups can Chl molecules be divided into and how are different structural groups influenced by their surrounding environments? (iii) What are the structural characteristics of pigment surrounding environments? Having no clear answers to the unresolved questions is probably due to a lack of computational methods for quantifying conformational changes in individual Chls and individual surrounding amino acids. The first version of the Triangular Spatial Relationship (TSR)-based method was developed for comparing protein 3D structures. The input data for the TSR-based method are experimentally determined 3D structures from the Protein Data Bank (PDB). In this study, we take advantage of the 3D structures of Chl-binding proteins deposited in the PDB and the TSR-based method to systematically investigate the 3D structures of various types of Chls and their protein environments. The key contributions of this study can be summarized as follows: (i) Specific structural characteristics of Chl d and f were identified and are defined using the TSR keys. (ii) Two and three clusters were found for various types of Chls and Chls a, respectively. The signature structures for distinguishing their corresponding two and three clusters were identified. (iii) Histidine residues were used as an example for revealing structural characteristics of Chl-binding sites. This study provides evidence for the three unresolved questions and builds a structural foundation through quantifying Chl conformations as well as structures of their embedded protein environments for future mechanistic understanding of relationships between Chl–protein interactions and their corresponding spectroscopic data. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2313482
- PAR ID:
- 10631288
- Publisher / Repository:
- Photochem
- Date Published:
- Journal Name:
- Photochem
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2673-7256
- Page Range / eLocation ID:
- 8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            H. J. M. Hou and S. I. Allakhverdiev (Ed.)Photosynthetic Reaction Centers (RCs) can be considered blueprints for highly efficient energy transfer. Embedded with an array of cofactors, including (bacterio)chlorophyll ((B)Chl) and (B)pheophytin ((B)Pheo) molecules, RCs function with a high quantum yield that spans a wide spectral range. Understanding the principles that underlie their function can influence the design of the next generation of artificial photosynthetic devices. We are particularly interested in the factors that influence the early stages of light-driven charge separation in RCs. With the recent publication of several highly anticipated RC structures and advanced computational methods available, it is possible to probe both the geometric and electronic structures of an array of RCs. In this chapter, we review the electronic and geometric structures of the (B)Chl and (B)Pheo primary electron acceptors from five RCs, comprising both Type I and Type II RCs and representing both heterodimeric and homodimeric systems. We showcase the dimeric A0●– state of Type I RCs, whereby the unpaired electron is delocalized, to various extents, over two (B)Chl molecules, (B)Chl2 and (B)Chl3. This delocalization is controlled by several factors, including the structure of the (B)Chls, interactions with the surrounding protein matrix, and the orientation and distances of the cofactors themselves. In contrast, the primary acceptors of Type II RCs are entirely monomeric, with electron density residing solely on the (B)Pheo. We compare the natural design of the primary acceptors of the Type I and Type II RCs from both an evolutionary and application based perspective.more » « less
- 
            Abstract Atomic-level three-dimensional (3D) structure data for biological macromolecules often prove critical to dissecting and understanding the precise mechanisms of action of cancer-related proteins and their diverse roles in oncogenic transformation, proliferation, and metastasis. They are also used extensively to identify potentially druggable targets and facilitate discovery and development of both small-molecule and biologic drugs that are today benefiting individuals diagnosed with cancer around the world. 3D structures of biomolecules (including proteins, DNA, RNA, and their complexes with one another, drugs, and other small molecules) are freely distributed by the open-access Protein Data Bank (PDB). This global data repository is used by millions of scientists and educators working in the areas of drug discovery, vaccine design, and biomedical and biotechnology research. The US Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) provides an integrated portal to the PDB archive that streamlines access for millions of worldwide PDB data consumers worldwide. Herein, we review online resources made available free of charge by the RCSB PDB to basic and applied researchers, healthcare providers, educators and their students, patients and their families, and the curious public. We exemplify the value of understanding cancer-related proteins in 3D with a case study focused on human papillomavirus.more » « less
- 
            Chlorophylls (Chl)s exist in a variety of flavors and are ubiquitous in both the energy and electron transfer processes of photosynthesis. The functions they perform often occur on the ultrafast (fs–ns) time scale and until recently, these have been difficult to measure in real time. Further, the complexity of the binding pockets and the resulting protein-matrix effects that alter the respective electronic properties have rendered theoretical modeling of these states difficult. Recent advances in experimental methodology, computational modeling, and emergence of new reaction center (RC) structures have renewed interest in these processes and allowed researchers to elucidate previously ambiguous functions of Chls and related pheophytins. This is complemented by a wealth of experimental data obtained from decades of prior research. Studying the electronic properties of Chl molecules has advanced our understanding of both the nature of the primary charge separation and subsequent electron transfer processes of RCs. In this review, we examine the structures of primary electron donors in Type I and Type II RCs in relation to the vast body of spectroscopic research that has been performed on them to date. Further, we present density functional theory calculations on each oxidized primary donor to study both their electronic properties and our ability to model experimental spectroscopic data. This allows us to directly compare the electronic properties of hetero- and homodimeric RCs.more » « less
- 
            Abstract The Protein Data Bank (PDB) archive is a rich source of information in the form of atomic‐level three‐dimensional (3D) structures of biomolecules experimentally determined using macromolecular crystallography, nuclear magnetic resonance (NMR) spectroscopy, and electron microscopy (3DEM). Originally established in 1971 as a resource for protein crystallographers to freely exchange data, today PDB data drive research and education across scientific disciplines. In 2011, the online portal PDB‐101 was launched to support teachers, students, and the general public in PDB archive exploration (pdb101.rcsb.org). Maintained by the Research Collaboratory for Structural Bioinformatics PDB, PDB‐101 aims to help train the next generation of PDB users and to promote the overall importance of structural biology and protein science to nonexperts. Regularly published features include the highly popularMolecule of the Monthseries, 3D model activities, molecular animation videos, and educational curricula. Materials are organized into various categories (Health and Disease, Molecules of Life, Biotech and Nanotech, and Structures and Structure Determination) and searchable by keyword. A biennial health focus frames new resource creation and provides topics for annual video challenges for high school students. Web analytics document that PDB‐101 materials relating to fundamental topics (e.g., hemoglobin, catalase) are highly accessed year‐on‐year. In addition, PDB‐101 materials created in response to topical health matters (e.g., Zika, measles, coronavirus) are well received. PDB‐101 shows how learning about the diverse shapes and functions of PDB structures promotes understanding of all aspects of biology, from the central dogma of biology to health and disease to biological energy.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
