skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scalable Spike-and-Slab
Spike-and-slab priors are commonly used for Bayesian variable selection, due to their interpretability and favorable statistical properties. However, existing samplers for spike-and-slab posteriors incur prohibitive computational costs when the number of variables is large. In this article, we propose Scalable Spike-and-Slab (S^3), a scalable Gibbs sampling implementation for high-dimensional Bayesian regression with the continuous spike-and-slab prior of George & McCulloch (1993). For a dataset with n observations and p covariates, S^3 has order max{n^2 p_t, np} computational cost at iteration t where p_t never exceeds the number of covariates switching spike-and-slab states between iterations t and t-1 of the Markov chain. This improves upon the order n^2 p per-iteration cost of state-of-the-art implementations as, typically, p_t is substantially smaller than p. We apply S^3 on synthetic and real-world datasets, demonstrating orders of magnitude speed-ups over existing exact samplers and significant gains in inferential quality over approximate samplers with comparable cost.  more » « less
Award ID(s):
1844695
PAR ID:
10469611
Author(s) / Creator(s):
; ;
Editor(s):
Chaudhuri, Kamalika and
Publisher / Repository:
PMLR
Date Published:
Edition / Version:
39
Volume:
162
Page Range / eLocation ID:
2021-2040
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Posterior sampling with the spike-and-slab prior [MB88], a popular multimodal distribution used to model uncertainty in variable selection, is considered the theoretical gold standard method for Bayesian sparse linear regression [CPS09, Roc18]. However, designing provable algorithms for performing this sampling task is notoriously challenging. Existing posterior samplers for Bayesian sparse variable selection tasks either require strong assumptions about the signal-to-noise ratio (SNR) [YWJ16], only work when the measurement count grows at least linearly in the dimension [MW24], or rely on heuristic approximations to the posterior. We give the first provable algorithms for spike-and-slab posterior sampling that apply for any SNR, and use a measurement count sublinear in the problem dimension. Concretely, assume we are given a measurement matrix X∈ℝn×d and noisy observations y=Xθ⋆+ξ of a signal θ⋆ drawn from a spike-and-slab prior π with a Gaussian diffuse density and expected sparsity k, where ξ∼(𝟘n,σ2In). We give a polynomial-time high-accuracy sampler for the posterior π(⋅∣X,y), for any SNR σ−1 > 0, as long as n≥k3⋅polylog(d) and X is drawn from a matrix ensemble satisfying the restricted isometry property. We further give a sampler that runs in near-linear time ≈nd in the same setting, as long as n≥k5⋅polylog(d). To demonstrate the flexibility of our framework, we extend our result to spike-and-slab posterior sampling with Laplace diffuse densities, achieving similar guarantees when σ=O(1k) is bounded. 
    more » « less
  2. Abstract We propose a very fast approximate Markov chain Monte Carlo sampling framework that is applicable to a large class of sparse Bayesian inference problems. The computational cost per iteration in several regression models is of order O(n(s+J)), where n is the sample size, s is the underlying sparsity of the model, and J is the size of a randomly selected subset of regressors. This cost can be further reduced by data sub-sampling when stochastic gradient Langevin dynamics are employed. The algorithm is an extension of the asynchronous Gibbs sampler of Johnson et al. [(2013). Analyzing Hogwild parallel Gaussian Gibbs sampling. In Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS’13) (Vol. 2, pp. 2715–2723)], but can be viewed from a statistical perspective as a form of Bayesian iterated sure independent screening [Fan, J., Samworth, R., & Wu, Y. (2009). Ultrahigh dimensional feature selection: Beyond the linear model. Journal of Machine Learning Research, 10, 2013–2038]. We show that in high-dimensional linear regression problems, the Markov chain generated by the proposed algorithm admits an invariant distribution that recovers correctly the main signal with high probability under some statistical assumptions. Furthermore, we show that its mixing time is at most linear in the number of regressors. We illustrate the algorithm with several models. 
    more » « less
  3. Abstract A Bayesian method is proposed for variable selection in high-dimensional matrix autoregressive models which reflects and exploits the original matrix structure of data to (a) reduce dimensionality and (b) foster interpretability of multidimensional relationship structures. A compact form of the model is derived which facilitates the estimation procedure and two computational methods for the estimation are proposed: a Markov chain Monte Carlo algorithm and a scalable Bayesian EM algorithm. Being based on the spike-and-slab framework for fast posterior mode identification, the latter enables Bayesian data analysis of matrix-valued time series at large scales. The theoretical properties, comparative performance, and computational efficiency of the proposed model is investigated through simulated examples and an application to a panel of country economic indicators. 
    more » « less
  4. Heavy quarkonium production at high transverse momentum( p_T p T )in hadronic collisions is explored in the QCD factorization approach. Wefind that the leading power in the 1/p_T 1 / p T expansion is responsible for high p_T p T regime, while the next-to-leading power contribution is necessary forthe low p_T p T region. We present the first numerical analysis of the scale evolutionof coupled twist-2 and twist-4 fragmentation functions (FFs) for heavyquarkonium production and demonstrate that the QCD factorizationapproach is capable of describing the p_T p T spectrum of hadronic J/\psi J / ψ production at the LHC. 
    more » « less
  5. It is common in machine learning applications that unlabeled data are abundant while acquiring labels is extremely difficult. In order to reduce the cost of training model while maintaining the model quality, active learning provides a feasible solution. Instead of acquiring labels for random samples, active learning methods carefully select the data to be labeled so as to alleviate the impact from the redundancy or noise in the selected data and improve the trained model performance. In early stage experimental design, previous active learning methods adopted data reconstruction framework, such that the selected data maintained high representative power. However, these models did not consider the data class structure, thus the selected samples could be predominated by the samples from major classes. Such mechanism fails to include samples from the minor classes thus tends to be less representative. To solve this challenging problem, we propose a novel active learning model for the early stage of experimental design. We use exclusive sparsity norm to enforce the selected samples to be (roughly) evenly distributed among different groups. We provide a new efficient optimization algorithm and theoretically prove the optimal convergence rate O(1/{T^2}). With a simple substitution, we reduce the computational load of each iteration from O(n^3) to O(n^2), which makes our algorithm more scalable than previous frameworks. 
    more » « less