skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 26, 2026

Title: The Power of Iterative Filtering for Supervised Learning with (Heavy) Contamination
Inspired by recent work on learning with distribution shift, we give a general outlier removal algorithm called iterative polynomial filtering and show a number of striking applications for supervised learning with contamination: (1) We show that any function class that can be approximated by low-degree polynomials with respect to a hypercontractive distribution can be efficiently learned under bounded contamination (also known as nasty noise). This is a surprising resolution to a longstanding gap between the complexity of agnostic learning and learning with contamination, as it was widely believed that low-degree approximators only implied tolerance to label noise. (2) For any function class that admits the (stronger) notion of sandwiching approximators, we obtain near-optimal learning guarantees even with respect to heavy additive contamination, where far more than 1/2 of the training set may be added adversarially. Prior related work held only for regression and in a list-decodable setting. (3) We obtain the first efficient algorithms for tolerant testable learning of functions of halfspaces with respect to any fixed log-concave distribution. Even the non-tolerant case for a single halfspace in this setting had remained open. These results significantly advance our understanding of efficient supervised learning under contamination, a setting that has been much less studied than its unsupervised counterpart.  more » « less
Award ID(s):
2505865
PAR ID:
10631380
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
https://doi.org/10.48550/arXiv.2505.20177
Date Published:
ISSN:
2505.20177
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We revisit the fundamental problem of learning with distribution shift, in which a learner is given labeled samples from training distribution D, unlabeled samples from test distribution D′ and is asked to output a classifier with low test error. The standard approach in this setting is to bound the loss of a classifier in terms of some notion of distance between D and D′. These distances, however, seem difficult to compute and do not lead to efficient algorithms. We depart from this paradigm and define a new model called testable learning with distribution shift, where we can obtain provably efficient algorithms for certifying the performance of a classifier on a test distribution. In this model, a learner outputs a classifier with low test error whenever samples from D and D′ pass an associated test; moreover, the test must accept if the marginal of D equals the marginal of D′. We give several positive results for learning well-studied concept classes such as halfspaces, intersections of halfspaces, and decision trees when the marginal of D is Gaussian or uniform on {±1}d. Prior to our work, no efficient algorithms for these basic cases were known without strong assumptions on D′. For halfspaces in the realizable case (where there exists a halfspace consistent with both D and D′), we combine a moment-matching approach with ideas from active learning to simulate an efficient oracle for estimating disagreement regions. To extend to the non-realizable setting, we apply recent work from testable (agnostic) learning. More generally, we prove that any function class with low-degree L2-sandwiching polynomial approximators can be learned in our model. We apply constructions from the pseudorandomness literature to obtain the required approximators. 
    more » « less
  2. We revisit the fundamental problem of learning with distribution shift, in which a learner is given labeled samples from training distribution D, unlabeled samples from test distribution D’ and is asked to output a classifier with low test error. The standard approach in this setting is to bound the loss of a classifier in terms of some notion of distance between D and D’. These distances, however, seem difficult to compute and do not lead to efficient algorithms. We depart from this paradigm and define a new model called testable learning with distribution shift, where we can obtain provably efficient algorithms for certifying the performance of a classifier on a test distribution. In this model, a learner outputs a classifier with low test error whenever samples from D and D’ pass an associated test; moreover, the test must accept (with high probability) if the marginal of D equals the marginal of D’. We give several positive results for learning well-studied concept classes such as halfspaces, intersections of halfspaces, and decision trees when the marginal of D is Gaussian or uniform on the hypercube. Prior to our work, no efficient algorithms for these basic cases were known without strong assumptions on D’. For halfspaces in the realizable case (where there exists a halfspace consistent with both D and D’), we combine a moment-matching approach with ideas from active learning to simulate an efficient oracle for estimating disagreement regions. To extend to the non-realizable setting, we apply recent work from testable (agnostic) learning. More generally, we prove that any function class with low-degree L2-sandwiching polynomial approximators can be learned in our model. Since we require L2- sandwiching (instead of the usual L1 loss), we cannot directly appeal to convex duality and instead apply constructions from the pseudorandomness literature to obtain the required approximators. We also provide lower bounds to show that the guarantees we obtain on the performance of our output hypotheses are best possible up to constant factors, as well as a separation showing that realizable learning in our model is incomparable to (ordinary) agnostic learning. 
    more » « less
  3. We give the first provably efficient algorithm for learning a one hidden layer convolutional network with respect to a general class of (potentially overlapping) patches. Additionally, our algorithm requires only mild conditions on the underlying distribution. We prove that our framework captures commonly used schemes from computer vision, including one-dimensional and two-dimensional "patch and stride" convolutions. Our algorithm-- Convotron -- is inspired by recent work applying isotonic regression to learning neural networks. Convotron uses a simple, iterative update rule that is stochastic in nature and tolerant to noise (requires only that the conditional mean function is a one layer convolutional network, as opposed to the realizable setting). In contrast to gradient descent, Convotron requires no special initialization or learning-rate tuning to converge to the global optimum. We also point out that learning one hidden convolutional layer with respect to a Gaussian distribution and just one disjoint patch P (the other patches may be arbitrary) is easy in the following sense: Convotron can efficiently recover the hidden weight vector by updating only in the direction of P. 
    more » « less
  4. We study the problem of learning under arbitrary distribution shift, where the learner is trained on a labeled set from one distribution but evaluated on a different, potentially adversarially generated test distribution. We focus on two frameworks: PQ learning [GKKM'20], allowing abstention on adversarially generated parts of the test distribution, and TDS learning [KSV'23], permitting abstention on the entire test distribution if distribution shift is detected. All prior known algorithms either rely on learning primitives that are computationally hard even for simple function classes, or end up abstaining entirely even in the presence of a tiny amount of distribution shift. We address both these challenges for natural function classes, including intersections of halfspaces and decision trees, and standard training distributions, including Gaussians. For PQ learning, we give efficient learning algorithms, while for TDS learning, our algorithms can tolerate moderate amounts of distribution shift. At the core of our approach is an improved analysis of spectral outlier-removal techniques from learning with nasty noise. Our analysis can (1) handle arbitrarily large fraction of outliers, which is crucial for handling arbitrary distribution shifts, and (2) obtain stronger bounds on polynomial moments of the distribution after outlier removal, yielding new insights into polynomial regression under distribution shifts. Lastly, our techniques lead to novel results for tolerant testable learning [RV'23], and learning with nasty noise. 
    more » « less
  5. In traditional models of supervised learning, the goal of a learner -- given examples from an arbitrary joint distribution on ℝd×{±1} -- is to output a hypothesis that is competitive (to within ϵ) of the best fitting concept from some class. In order to escape strong hardness results for learning even simple concept classes, we introduce a smoothed-analysis framework that requires a learner to compete only with the best classifier that is robust to small random Gaussian perturbation. This subtle change allows us to give a wide array of learning results for any concept that (1) depends on a low-dimensional subspace (aka multi-index model) and (2) has a bounded Gaussian surface area. This class includes functions of halfspaces and (low-dimensional) convex sets, cases that are only known to be learnable in non-smoothed settings with respect to highly structured distributions such as Gaussians. Surprisingly, our analysis also yields new results for traditional non-smoothed frameworks such as learning with margin. In particular, we obtain the first algorithm for agnostically learning intersections of k-halfspaces in time kpoly(logkϵγ) where γ is the margin parameter. Before our work, the best-known runtime was exponential in k (Arriaga and Vempala, 1999). 
    more » « less