skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 27, 2026

Title: Explaining Differences in Voting Patterns across Voting Domains Using Hierarchical Bayesian Models
Abstract Spatial voting models are widely used in political science to analyze legislators’ preferences and voting behavior. Traditional models assume that legislators’ ideal points are static across different types of votes. This article extends the Bayesian spatial voting model to incorporate hierarchical Bayesian methods, allowing for the identification of covariates that explain differences in legislators’ ideal points across voting domains. We apply this model to procedural and final passage votes in the U.S. House of Representatives from the 93rd through 113th Congresses. Our findings indicate that legislators in the minority party and those representing moderate constituencies are more likely to exhibit different ideal points between procedural and final passage votes. This research advances the methodology of ideal point estimation by simultaneously scaling ideal points and explaining variation in these points, providing a more nuanced understanding of legislative voting behavior.  more » « less
Award ID(s):
2114727 2023495
PAR ID:
10631425
Author(s) / Creator(s):
; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Political Analysis
ISSN:
1047-1987
Page Range / eLocation ID:
1 to 21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We extend classical ideal point estimation to allow voters to have different preferences when voting in different domains—for example, when voting on agricultural policy than when voting on defense policy. Our scaling procedure results in estimated ideal points on a common scale. As a result, we are able to directly compare a member’s revealed preferences across different domains of voting (different sets of motions) to assess if, for example, a member votes more conservatively on agriculture motions than on defense. In doing so, we are able to assess the extent to which voting behavior of an individual voter is consistent with a uni-dimensional spatial model—if a member has the same preferences in all domains. The key novelty is to estimate rather than assume the identity of “stayers”—voters whose revealed preference is constant across votes. Our approach offers methodology for investigating the relationship between the basic space and issue space in legislative voting (Poole 2007). There are several methodological advantages to our approach. First, our model allows for testing sharp hypotheses. Second, the methodology developed can be understood as a kind of partial-pooling model for item response theory scaling, resulting in less uncertainty of estimates. Related, our estimation method provides a principled and unified approach to the issue of “granularity” (i.e., the level of aggregation) in the analysis of roll-call data (Crespin and Rohde 2010; Roberts et al. 2016). We illustrate the model by estimating U.S. House of Representatives members’ revealed preferences in different policy domains, and identify several other potential applications of the model including: studying the relationship between committee and floor voting behavior; and investigating constituency influence and representation. 
    more » « less
  2. In many real world situations, collective decisions are made using voting and, in scenarios such as committee or board elections, employing voting rules that return multiple winners. In multi-winner approval voting (AV), an agent submits a ballot consisting of approvals for as many candidates as they wish, and winners are chosen by tallying up the votes and choosing the top-k candidates receiving the most approvals. In many scenarios, an agent may manipulate the ballot they submit in order to achieve a better outcome by voting in a way that does not reflect their true preferences. In complex and uncertain situations, agents may use heuristics instead of incurring the additional effort required to compute the manipulation which most favors them. In this paper, we examine voting behavior in single-winner and multi-winner approval voting scenarios with varying degrees of uncertainty using behavioral data obtained from Mechanical Turk. We find that people generally manipulate their vote to obtain a better outcome, but often do not identify the optimal manipulation. There are a number of predictive models of agent behavior in the social choice and psychology literature that are based on cognitively plausible heuristic strategies. We show that the existing approaches do not adequately model our real-world data. We propose a novel model that takes into account the size of the winning set and human cognitive constraints; and demonstrate that this model is more effective at capturing real-world behaviors in multi-winner approval voting scenarios. 
    more » « less
  3. This paper presents an ACT-R model designed to simulate voting behavior on full-face paper ballots. The model implements a non-standard voting strategy: the strategy votes first from left to right on a ballot and then from top to bottom. We ran this model on 6600 randomly-generated ballots governed by three different variables that affected the visual layout of the ballot. The findings suggest that our model’s error behavior is emergent and sensitive to ballot structure. These results represent an important step towards our goal of creating a software tool capable of identifying bad ballot design. 
    more » « less
  4. We propose and study a new class of polynomial voting rules for a general decentralized decision/consensus system, and more specifically for the proof-of-stake protocol. The main idea, inspired by the Penrose square-root law and the more recent quadratic voting rule, is to differentiate a voter’s voting power and the voter’s share (fraction of the total in the system). We show that, whereas voter shares form a martingale process that converges to a Dirichlet distribution, their voting powers follow a supermartingale process that decays to zero over time. This prevents any voter from controlling the voting process and, thus, enhances security. For both limiting results, we also provide explicit rates of convergence. When the initial total volume of votes (or stakes) is large, we show a phase transition in share stability (or the lack thereof), corresponding to the voter’s initial share relative to the total. We also study the scenario in which trading (of votes/stakes) among the voters is allowed and quantify the level of risk sensitivity (or risk aversion) in three categories, corresponding to the voter’s utility being a supermartingale, a submartingale, and a martingale. For each category, we identify the voter’s best strategy in terms of participation and trading. Funding: W. Tang gratefully acknowledges financial support through the National Science Foundation [Grants DMS-2113779 and DMS-2206038] and through a start-up grant at Columbia University. D. D. Yao’s work is part of a Columbia–City University/Hong Kong collaborative project that is supported by InnoHK Initiative, the Government of Hong Kong Special Administrative Region, and the Laboratory for AI-Powered Financial Technologies. 
    more » « less
  5. Abstract We develop a new class of spatial voting models for binary preference data that can accommodate both monotonic and non-monotonic response functions, and are more flexible than alternative “unfolding” models previously introduced in the literature. We then use these models to estimate revealed preferences for legislators in the U.S. House of Representatives and justices on the U.S. Supreme Court. The results from these applications indicate that the new models provide superior complexity-adjusted performance to various alternatives and that the additional flexibility leads to preferences’ estimates that more closely match the perceived ideological positions of legislators and justices. 
    more » « less