skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Simple finite element algorithm for solving antiplane problems with Gurtin–Murdoch material surfaces
The finite element algorithm is developed to solve antiplane problems involving elastic domains whose boundaries or their parts are coated with thin and relatively stiff layers. These layers are modeled by the vanishing thickness Gurtin–Murdoch material surfaces that could be open or closed, and smooth or non-smooth. The governing equations for the problems are derived using variational arguments. The domains are discretized using triangular finite elements. In general, standard linear elements are used to approximate displacements in the domain. However, to capture the singular behavior of the elastic fields near the tips of the open Gurtin–Murdoch surfaces, a novel blended singular element is devised. Numerical examples are presented to demonstrate the accuracy and robustness of the algorithm developed.  more » « less
Award ID(s):
2112894
PAR ID:
10631459
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Finite elements in analysis and design
Volume:
246
ISSN:
0168-874X
Page Range / eLocation ID:
104318
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The discrete damage model presented in this paper accounts for 42 non-interacting crack microplanes directions. At the scale of the representative volume element, the free enthalpy is the sum of the elastic energy stored in the non-damaged bulk material and in the displacement jumps at crack faces. Closed cracks propagate in the pure mode II, whereas open cracks propagate in the mixed mode (I/II). The elastic domain is at the intersection of the yield surfaces of the activated crack families, and thus describes a non-smooth surface. In order to solve for the 42 crack densities, a Closest Point Projection algorithm is adopted locally. The representative volume element inelastic strain is calculated iteratively using the Newton–Raphson method. The proposed damage model was rigorously calibrated for both compressive and tensile stress paths. Finite element method simulations of triaxial compression tests showed that the transition between brittle and ductile behavior at increasing confining pressure can be captured. The cracks’ density, orientation, and location predicted in the simulations are in agreement with experimental observations made during compression and tension tests, and accurately show the difference between tensile and compressive strength. Plane stress tension tests simulated for a fiber-reinforced brittle material also demonstrated that the model can be used to interpret crack patterns, design composite structures and recommend reparation techniques for structural elements subjected to multiple damage mechanisms. 
    more » « less
  2. We present an optimal a priori error estimates of the elliptic problems with Dirac sources away from the singular point using discontinuous and enriched Galerkin finite element methods. It is widely shown that the finite element solutions for elliptic problems with Dirac source terms converge sub-optimally in classical norms on uniform meshes. However, here we employ inductive estimates and norm to obtain the optimal order by excluding the small ball regions with the singularities for both two and three dimensional domains. Numerical examples are presented to substantiate our theoretical results. 
    more » « less
  3. We present an implementation of the trimmed serendipity finite element family, using the open-source finite element package Firedrake. The new elements can be used seamlessly within the software suite for problems requiring H 1 , H (curl), or H (div)-conforming elements on meshes of squares or cubes. To test how well trimmed serendipity elements perform in comparison to traditional tensor product elements, we perform a sequence of numerical experiments including the primal Poisson, mixed Poisson, and Maxwell cavity eigenvalue problems. Overall, we find that the trimmed serendipity elements converge, as expected, at the same rate as the respective tensor product elements, while being able to offer significant savings in the time or memory required to solve certain problems. 
    more » « less
  4. Finite element de Rham complexes and finite element Stokes complexes with varying degrees of smoothness in three dimensions are systematically constructed in this paper. Smooth scalar finite elements in three dimensions are derived through a non-overlapping decomposition of the simplicial lattice. H(div)-conforming finite elements and H(curl)-conforming finite elements with varying degrees of smoothness are devised based on these smooth scalar finite elements. The finite element de Rham complexes with corresponding smoothness and commutative diagrams are induced by these elements. The div stability of the H(div)-conforming finite elements is established, and the exactness of these finite element complexes is proven. 
    more » « less
  5. Consider the scattering of a time-harmonic elastic plane wave by a periodic rigid surface. The elastic wave propagation is governed by the two-dimensional Navier equation. Based on a Dirichlet-to-Neumann (DtN) map, a transparent boundary condition (TBC) is introduced to reduce the scattering problem into a boundary value problem in a bounded domain. By using the finite element method, the discrete problem is considered, where the TBC is replaced by the truncated DtN map. A new duality argument is developed to derive the a posteriori error estimate, which contains both the finite element approximation error and the DtN truncation error. An a posteriori error estimate based adaptive finite element algorithm is developed to solve the elastic surface scattering problem. Numerical experiments are presented to demonstrate the effectiveness of the proposed method. 
    more » « less