In pretraining data detection, the goal is to detect whether a given sentence is in the dataset used for training a Large Language Model LLM). Recent methods (such as Min-K % and Min-K%++) reveal that most training corpora are likely contaminated with both sensitive content and evaluation benchmarks, leading to inflated test set performance. These methods sometimes fail to detect samples from the pretraining data, primarily because they depend on statistics composed of causal token likelihoods. We introduce Infilling Score, a new test-statistic based on non-causal token likelihoods. Infilling Score can be computed for autoregressive models without re-training using Bayes rule. A naive application of Bayes rule scales linearly with the vocabulary size. However, we propose a ratio test-statistic whose computation is invariant to vocabulary size. Empirically, our method achieves a significant accuracy gain over state-of-the-art methods including Min-K%, and Min-K%++ on the WikiMIA benchmark across seven models with different parameter sizes. Further, we achieve higher AUC compared to reference-free methods on the challenging MIMIR benchmark. Finally, we create a benchmark dataset consisting of recent data sources published after the release of Llama-3; this benchmark provides a statistical baseline to indicate potential corpora used for Llama-3 training.
more »
« less
Infilling Score: A Pretraining Data Detection Algorithm for Large Language Models
In pretraining data detection, the goal is to detect whether a given sentence is in the dataset used for training a Large Language Model LLM). Recent methods (such as Min-K % and Min-K%++) reveal that most training corpora are likely contaminated with both sensitive content and evaluation benchmarks, leading to inflated test set performance. These methods sometimes fail to detect samples from the pretraining data, primarily because they depend on statistics composed of causal token likelihoods. We introduce Infilling Score, a new test-statistic based on non-causal token likelihoods. Infilling Score can be computed for autoregressive models without re-training using Bayes rule. A naive application of Bayes rule scales linearly with the vocabulary size. However, we propose a ratio test-statistic whose computation is invariant to vocabulary size. Empirically, our method achieves a significant accuracy gain over state-of-the-art methods including Min-K%, and Min-K%++ on the WikiMIA benchmark across seven models with different parameter sizes. Further, we achieve higher AUC compared to reference-free methods on the challenging MIMIR benchmark. Finally, we create a benchmark dataset consisting of recent data sources published after the release of Llama-3; this benchmark provides a statistical baseline to indicate potential corpora used for Llama-3 training.
more »
« less
- Award ID(s):
- 2505865
- PAR ID:
- 10631463
- Publisher / Repository:
- ICLR 2025
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The pretraining data of today's strongest language models remains opaque, even when their parameters are open-sourced. In particular, little is known about the proportions of different domains, languages, or code represented in the data. While a long line of membership inference attacks aim to identify training examples on an instance level, they do not extend easily to global statistics about the corpus. In this work, we tackle a task which we call data mixture inference, which aims to uncover the distributional make-up of the pretraining data. We introduce a novel attack based on a previously overlooked source of information—byte-pair encoding (BPE) tokenizers, used by the vast majority of modern language models. Our key insight is that the ordered vocabulary learned by a BPE tokenizer naturally reveals information about the token frequencies in its training data: the first token is the most common byte pair, the second is the most common pair after merging the first token, and so on. Given a tokenizer's merge list along with data samples for each category of interest (eg, different natural languages), we formulate a linear program that solves for the relative proportion of each category in the tokenizer's training set. Importantly, to the extent to which tokenizer training data is representative of the pretraining data, we indirectly learn about the pretraining data. In controlled experiments, we show that our attack can recover mixture ratios with high precision for tokenizers trained on known mixtures of natural languages, programming languages, and data sources. We then apply our approach to off-the-shelf tokenizers released alongside recent LMs. We confirm much publicly disclosed information about these models, and also make several new inferences: GPT-4o is much more multilingual than its predecessors, training on 10x more non-English data than GPT-3.5, Llama 3 and Claude are trained on predominantly code, and many recent models are trained on 7-16% books. We hope our work sheds light on current design practices for pretraining data, and inspires continued research into data mixture inference for LMs.more » « less
-
LLMs process text as sequences of tokens that roughly correspond to words, where less common words are represented by multiple tokens. However, individual tokens are often semantically unrelated to the meanings of the words/concepts they comprise. For example, Llama-2-7b’s tokenizer splits the word “patrolling” into two tokens, “pat” and “rolling”, neither of which correspond to semantically meaningful units like “patrol” or "-ing.” Similarly, the overall meanings of named entities like “Neil Young” and multi-word expressions like “break a leg” cannot be directly inferred from their constituent tokens. Mechanistically, how do LLMs convert such arbitrary groups of tokens into useful higher-level representations? In this work, we find that last token representations of named entities and multi-token words exhibit a pronounced “erasure” effect, where information about previous and current tokens is rapidly forgotten in early layers. Using this observation, we propose a method to “read out” the implicit vocabulary of an autoregressive LLM by examining differences in token representations across layers, and present results of this method for Llama-2-7b and Llama-3-8B. To our knowledge, this is the first attempt to probe the implicit vocabulary of an LLM.more » « less
-
The pretraining data of today's strongest language models is opaque; in particular, little is known about the proportions of various domains or languages represented. In this work, we tackle a task which we call data mixture inference, which aims to uncover the distributional make-up of training data. We introduce a novel attack based on a previously overlooked source of information: byte-pair encoding (BPE) tokenizers, used by the vast majority of modern language models. Our key insight is that the ordered list of merge rules learned by a BPE tokenizer naturally reveals information about the token frequencies in its training data. Given a tokenizer's merge list along with example data for each category of interest, we formulate a linear program that solves for the proportion of each category in the tokenizer's training set. In controlled experiments, we show that our attack recovers mixture ratios with high precision for tokenizers trained on known mixtures of natural languages, programming languages, and data sources. We then apply our approach to off-the-shelf tokenizers released with recent LMs. We confirm much publicly disclosed information about these models, and also make several new inferences: GPT-4o and Mistral NeMo's tokenizers are much more multilingual than their predecessors, training on 39% and 47% non-English language data, respectively; Llama 3 extends GPT-3.5's tokenizer primarily for multilingual (48%) use; GPT-3.5's and Claude's tokenizers are trained on predominantly code (~60%). We hope our work sheds light on current design practices for pretraining data, and inspires continued research into data mixture inference for LMs.more » « less
-
We propose Gumbel Noise Score Matching (GNSM), a novel unsupervised method to detect anomalies in categorical data. GNSM accomplishes this by estimating the scores, i.e., the gradients of log likelihoods w.r.t. inputs, of continuously relaxed categorical distributions. We test our method on a suite of anomaly detection tabular datasets. GNSM achieves a consistently high performance across all experiments. We further demonstrate the flexibility of GNSM by applying it to image data where the model is tasked to detect poor segmentation predictions. Images ranked anomalous by GNSM show clear segmentation failures, with the anomaly scores strongly correlating with segmentation metrics computed on ground-truth. We outline the score matching training objective utilized by GNSM and provide an open-source implementation of our work.more » « less
An official website of the United States government

