skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 17, 2025

Title: Learning the Sherrington-Kirkpatrick Model Even at Low Temperature
We consider the fundamental problem of learning the parameters of an undirected graphical model or Markov Random Field (MRF) in the setting where the edge weights are chosen at random. For Ising models, we show that a multiplicative-weight update algorithm due to Klivans and Meka learns the parameters in polynomial time for any inverse temperature β≤logn‾‾‾‾‾√. This immediately yields an algorithm for learning the Sherrington-Kirkpatrick (SK) model beyond the high-temperature regime of β<1. Prior work breaks down at β=1 and requires heavy machinery from statistical physics or functional inequalities. In contrast, our analysis is relatively simple and uses only subgaussian concentration. Our results extend to MRFs of higher order (such as pure p-spin models), where even results in the high-temperature regime were not known.  more » « less
Award ID(s):
2505865
PAR ID:
10631512
Author(s) / Creator(s):
;
Publisher / Repository:
https://doi.org/10.48550/arXiv.2411.11174
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chakrabarti, Amit; Swamy, Chaitanya (Ed.)
    We consider the problem of sampling from the ferromagnetic Potts and random-cluster models on a general family of random graphs via the Glauber dynamics for the random-cluster model. The random-cluster model is parametrized by an edge probability p ∈ (0,1) and a cluster weight q > 0. We establish that for every q ≥ 1, the random-cluster Glauber dynamics mixes in optimal Θ(nlog n) steps on n-vertex random graphs having a prescribed degree sequence with bounded average branching γ throughout the full high-temperature uniqueness regime p < p_u(q,γ). The family of random graph models we consider includes the Erdős-Rényi random graph G(n,γ/n), and so we provide the first polynomial-time sampling algorithm for the ferromagnetic Potts model on Erdős-Rényi random graphs for the full tree uniqueness regime. We accompany our results with mixing time lower bounds (exponential in the largest degree) for the Potts Glauber dynamics, in the same settings where our Θ(n log n) bounds for the random-cluster Glauber dynamics apply. This reveals a novel and significant computational advantage of random-cluster based algorithms for sampling from the Potts model at high temperatures. 
    more » « less
  2. We study the identity testing problem in the context of spin systems or undirected graphical models, where it takes the following form: given the parameter specification of the model M and a sampling oracle for the distribution \mu_{M^*} of an unknown model M^*, can we efficiently determine if the two models M and M^* are the same? We consider identity testing for both soft-constraint and hard-constraint systems. In particular, we prove hardness results in two prototypical cases, the Ising model and proper colorings, and explore whether identity testing is any easier than structure learning. For the ferromagnetic (attractive) Ising model, Daskalasis et al. (2018) presented a polynomial time algorithm for identity testing. We prove hardness results in the antiferromagnetic (repulsive) setting in the same regime of parameters where structure learning is known to require a super-polynomial number of samples. In particular, for n-vertex graphs of maximum degree d, we prove that if |\beta| d = \omega(\log n) (where \beta is the inverse temperature parameter), then there is no identity testing algorithm for the antiferromagnetic Ising model that runs in polynomial time unless RP = NP. We also establish computational lower bounds for a broader set of parameters under the (randomized) exponential time hypothesis. In our proofs, we use random graphs as gadgets; this is inspired by similar constructions in seminal works on the hardness of approximate counting. In the hard-constraint setting, we present hardness results for identity testing for proper colorings. Our results are based on the presumed hardness of #BIS, the problem of (approximately) counting independent sets in bipartite graphs. In particular, we prove that identity testing for colorings is hard in the same range of parameters where structure learning is known to be hard, which in turn matches the parameter regime for NP-hardness of the corresponding decision problem. 
    more » « less
  3. null (Ed.)
    Simulated annealing is an effective and general means of optimization. It is in fact inspired by metallurgy, where the temperature of a material determines its behavior in thermodynamics. Likewise, in simulated annealing, the actions that the algorithm takes depend entirely on the value of a variable which captures the notion of temperature. Typically, simulated annealing starts with a high temperature, which makes the algorithm pretty unpredictable, and gradually cools the temperature down to become more stable. A key component that plays a crucial role in the performance of simulated annealing is the criteria under which the temperature changes namely, the cooling schedule. Motivated by this, we study the following question in this work: "Given enough samples to the instances of a specific class of optimization problems, can we design optimal (or approximately optimal) cooling schedules that minimize the runtime or maximize the success rate of the algorithm on average when the underlying problem is drawn uniformly at random from the same class?" We provide positive results both in terms of sample complexity and simulation complexity. For sample complexity, we show that O (m^1/2) samples suffice to find an approximately optimal cooling schedule of length m. We complement this result by giving a lower bound of Ω (m^1/3) on the sample complexity of any learning algorithm that provides an almost optimal cooling schedule. These results are general and rely on no assumption. For simulation complexity, however, we make additional assumptions to measure the success rate of an algorithm. To this end, we introduce the monotone stationary graph that models the performance of simulated annealing. Based on this model, we present polynomial time algorithms with provable guarantees for the learning problem. 
    more » « less
  4. Bojanczyk, M. et (Ed.)
    Embedding graphs in a geographical or latent space, i.e. inferring locations for vertices in Euclidean space or on a smooth manifold or submanifold, is a common task in network analysis, statistical inference, and graph visualization. We consider the classic model of random geometric graphs where n points are scattered uniformly in a square of area n, and two points have an edge between them if and only if their Euclidean distance is less than r. The reconstruction problem then consists of inferring the vertex positions, up to the symmetries of the square, given only the adjacency matrix of the resulting graph. We give an algorithm that, if r = n^α for α > 0, with high probability reconstructs the vertex positions with a maximum error of O(n^β) where β = 1/2-(4/3)α, until α ≥ 3/8 where β = 0 and the error becomes O(√{log n}). This improves over earlier results, which were unable to reconstruct with error less than r. Our method estimates Euclidean distances using a hybrid of graph distances and short-range estimates based on the number of common neighbors. We extend our results to the surface of the sphere in ℝ³ and to hypercubes in any constant dimension. 
    more » « less
  5. Meka, Raghu (Ed.)
    We prove a hardness of sampling result for the anti-ferromagnetic Ising model on random graphs of average degree d for large constant d, proving that when the normalized inverse temperature satisfies β > 1 (asymptotically corresponding to the condensation threshold), then w.h.p. over the random graph there is no stable sampling algorithm that can output a sample close in W₂ distance to the Gibbs measure. The results also apply to a fixed-magnetization version of the model, showing that there are no stable sampling algorithms for low but positive temperature max and min bisection distributions. These results show a gap in the tractability of search and sampling problems: while there are efficient algorithms to find near optimizers, stable sampling algorithms cannot access the Gibbs distribution concentrated on such solutions. Our techniques involve extensions of the interpolation technique relating behavior of the mean field Sherrington-Kirkpatrick model to behavior of Ising models on random graphs of average degree d for large d. While previous interpolation arguments compared the free energies of the two models, our argument compares the average energies and average overlaps in the two models. 
    more » « less