skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Parametric subharmonic instability of inertial shear at ocean fronts
The two-dimensional stability of vertically sheared inertial oscillations at ocean fronts is explored through a linear stability analysis and nonlinear simulations. Baroclinic effects reduce the minimum frequency of inertia-gravity waves to an extent determined by the balanced Richardson number$${{Ri}}$$of the front. Below a critical value of$${{Ri}}$$, which depends on the strength of the inertial shear, the inertial oscillations become unstable to parametric subharmonic instability (PSI) resulting in growing perturbations that oscillate at half the inertial frequency$$f$$. Since the critical value is always greater than 1, PSI can occur at fronts stable to symmetric instability. Although modest in weak inertial shear, growth rates exceeding$$f/2$$can be achieved for inertial shear greater than or equal to the thermal wind shear. Our formulation allows for non-hydrostatic perturbations and can be applied to initially unstratified geostrophic adjustment problems. We find that PSI will almost totally damp the transient oscillations that arise during geostrophic adjustment. The perturbations gain energy at the expense of the inertial oscillations through ageostrophic shear production. The perturbations then themselves become unstable to secondary Kelvin–Helmholtz instabilities creating a pathway by which the inertial oscillations can be dissipated rapidly. In contrast to symmetric and baroclinic instabilities that draw on a front's kinetic or potential energy, PSI acts to increase the energy stored in the balanced front as the convergence and divergence of the eddy-momentum fluxes set up a secondary circulation in the sense to stand up the front.  more » « less
Award ID(s):
1851450
PAR ID:
10631549
Author(s) / Creator(s):
;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
966
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Submesoscale fronts with large horizontal buoyancy gradients and$$O(1)$$Rossby numbers are common in the upper ocean. These fronts are associated with large vertical transport and are hotspots for biological activity. Submesoscale fronts are susceptible to symmetric instability (SI) – a form of stratified inertial instability which can occur when the potential vorticity is of the opposite sign to the Coriolis parameter. Here, we use a weakly nonlinear stability analysis to study SI in an idealised frontal zone with a uniform horizontal buoyancy gradient in thermal wind balance. We find that the structure and energetics of SI strongly depend on the front strength, defined as the ratio of the horizontal buoyancy gradient to the square of the Coriolis frequency. Vertically bounded non-hydrostatic SI modes can grow by extracting potential or kinetic energy from the balanced front and the relative importance of these energy reservoirs depends on the front strength and vertical stratification. We describe two limiting behaviours as ‘slantwise convection’ and ‘slantwise inertial instability’ where the largest energy source is the buoyancy flux and geostrophic shear production, respectively. The growing linear SI modes eventually break down through a secondary shear instability, and in the process transport considerable geostrophic momentum. The resulting breakdown of thermal wind balance generates vertically sheared inertial oscillations and we estimate the amplitude of these oscillations from the stability analysis. We finally discuss broader implications of these results in the context of current parameterisations of SI. 
    more » « less
  2. Abstract LetKbe an imaginary quadratic field and$$p\geq 5$$a rational prime inert inK. For a$$\mathbb {Q}$$-curveEwith complex multiplication by$$\mathcal {O}_K$$and good reduction atp, K. Rubin introduced ap-adicL-function$$\mathscr {L}_{E}$$which interpolates special values ofL-functions ofEtwisted by anticyclotomic characters ofK. In this paper, we prove a formula which links certain values of$$\mathscr {L}_{E}$$outside its defining range of interpolation with rational points onE. Arithmetic consequences includep-converse to the Gross–Zagier and Kolyvagin theorem forE. A key tool of the proof is the recent resolution of Rubin’s conjecture on the structure of local units in the anticyclotomic$${\mathbb {Z}}_p$$-extension$$\Psi _\infty $$of the unramified quadratic extension of$${\mathbb {Q}}_p$$. Along the way, we present a theory of local points over$$\Psi _\infty $$of the Lubin–Tate formal group of height$$2$$for the uniformizing parameter$$-p$$. 
    more » « less
  3. Abstract We prove a Khintchine-type recurrence theorem for pairs of endomorphisms of a countable discrete abelian group. As a special case of the main result, if$$\Gamma $$is a countable discrete abelian group,$$\varphi , \psi \in \mathrm {End}(\Gamma )$$, and$$\psi - \varphi $$is an injective endomorphism with finite index image, then for any ergodic measure-preserving$$\Gamma $$-system$$( X, {\mathcal {X}}, \mu , (T_g)_{g \in \Gamma } )$$, any measurable set$$A \in {\mathcal {X}}$$, and any$${\varepsilon }> 0$$, there is a syndetic set of$$g \in \Gamma$$such that$$\mu ( A \cap T_{\varphi(g)}^{-1} A \cap T_{\psi(g)}^{-1} A ) > \mu(A)^3 - \varepsilon$$. This generalizes the main results of Ackelsberget al[Khintchine-type recurrence for 3-point configurations.Forum Math. Sigma10(2022), Paper no. e107] and essentially answers a question left open in that paper [Question 1.12; Khintchine-type recurrence for 3-point configurations.Forum Math. Sigma10(2022), Paper no. e107]. For the group$$\Gamma = {\mathbb {Z}}^d$$, the result applies to pairs of endomorphisms given by matrices whose difference is non-singular. The key ingredients in the proof are: (1) a recent result obtained jointly with Bergelson and Shalom [Khintchine-type recurrence for 3-point configurations.Forum Math. Sigma10(2022), Paper no. e107] that says that the relevant ergodic averages are controlled by a characteristic factor closely related to thequasi-affine(orConze–Lesigne) factor; (2) an extension trick to reduce to systems with well-behaved (with respect to$$\varphi $$and$$\psi $$) discrete spectrum; and (3) a description of Mackey groups associated to quasi-affine cocycles over rotational systems with well-behaved discrete spectrum. 
    more » « less
  4. The rheological behaviour of dense suspensions of ideally conductive particles in the presence of both electric field and shear flow is studied using large-scale numerical simulations. Under the action of an electric field, these particles are known to undergo dipolophoresis (DIP), which is the combination of two nonlinear electrokinetic phenomena: induced-charge electrophoresis (ICEP) and dielectrophoresis (DEP). For ideally conductive particles, ICEP is predominant over DEP, resulting in transient pairing dynamics. The shear viscosity and first and second normal stress differences$$N_1$$and$$N_2$$of such suspensions are examined over a range of volume fractions$$15\,\% \leq \phi \leq 50\,\%$$as a function of Mason number$$Mn$$, which measures the relative importance of viscous shear stress over electrokinetic-driven stress. For$$Mn < 1$$or low shear rates, the DIP is shown to dominate the dynamics, resulting in a relatively low-viscosity state. The positive$$N_1$$and negative$$N_2$$are observed at$$\phi < 30\,\%$$, which is similar to Brownian suspensions, while their signs are reversed at$$\phi \ge 30\,\%$$. For$$Mn \ge 1$$, the shear thickening starts to arise at$$\phi \ge 30\,\%$$, and an almost five-fold increase in viscosity occurs at$$\phi = 50\,\%$$. Both$$N_1$$and$$N_2$$are negative for$$Mn \gg 1$$at all volume fractions considered. We illuminate the transition in rheological behaviours from DIP to shear dominance around$$Mn = 1$$in connection to suspension microstructure and dynamics. Lastly, our findings reveal the potential use of nonlinear electrokinetics as a means of active rheology control for such suspensions. 
    more » « less
  5. The motion of a freely rotating prolate spheroid in a simple shear flow of a dilute polymeric solution is examined in the limit of large particle aspect ratio,$$\kappa$$. A regular perturbation expansion in the polymer concentration,$$c$$, a generalized reciprocal theorem, and slender body theory to represent the velocity field of a Newtonian fluid around the spheroid are used to obtain the$$O(c)$$correction to the particle's orientational dynamics. The resulting dynamical system predicts a range of orientational behaviours qualitatively dependent upon$$c\, De$$($$De$$is the imposed shear rate times the polymer relaxation time) and$$\kappa$$and quantitatively on$$c$$. At a small but finite$$c\, De$$, the particle spirals towards a limit cycle near the vorticity axis for all initial conditions. Upon increasing$$\kappa$$, the limit cycle becomes smaller. Thus, ultimately the particle undergoes a periodic motion around and at a small angle from the vorticity axis. At moderate$$c\, De$$, a particle starting near the flow–gradient plane departs it monotonically instead of spirally, as this plane (a limit cycle at smaller$$c\, De$$) obtains a saddle and an unstable node. The former is close to the flow direction. Upon further increasing$$c\, De$$, the saddle node changes to a stable node. Therefore, depending upon the initial condition, a particle may either approach a periodic orbit near the vorticity axis or obtain a stable orientation near the flow direction. Upon further increasing$$c\, De$$, the limit cycle near the vorticity axis vanishes, and the particle aligns with the flow direction for all starting orientations. 
    more » « less