skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: LNL+K: Enhancing Learning with Noisy Labels Through Noise Source Knowledge Integration
Learning with noisy labels (LNL) aims to train a high-performing model using a noisy dataset. We observe that noise for a given class often comes from a limited set of categories, yet many LNL methods overlook this. For example, an image mislabeled as a cheetah is more likely a leopard than a hippopotamus due to its visual similarity. Thus, we explore Learning with Noisy Labels with noise source Knowledge integration (LNL+K), which leverages knowledge about likely source(s) of label noise that is often provided in a dataset's meta-data. Integrating noise source knowledge boosts performance even in settings where LNL methods typically fail. For example, LNL+K methods are effective on datasets where noise represents the majority of samples, which breaks a critical premise of most methods developed for LNL. Our LNL+K methods can boost performance even when noise sources are estimated rather than extracted from meta-data. We provide several baseline LNL+K methods that integrate noise source knowledge into state-of-the-art LNL models that are evaluated across six diverse datasets and two types of noise, where we report gains of up to 23% compared to the unadapted methods. Critically, we show that LNL methods fail to generalize on some real-world datasets, even when adapted to integrate noise source knowledge, highlighting the importance of directly exploring LNL+K.  more » « less
Award ID(s):
2134696
PAR ID:
10631611
Author(s) / Creator(s):
;
Publisher / Repository:
European Conference on Computer Vision
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Existing research on learning with noisy labels mainly focuses on synthetic label noise. Synthetic label noise, though has clean structures which greatly enable statistical analyses, often fails to model the real-world noise patterns. The recent literature has observed several efforts to offer real-world noisy datasets, e.g., Food-101N, WebVision, and Clothing1M. Yet the existing efforts suffer from two caveats: firstly, the lack of ground-truth verification makes it hard to theoretically study the property and treatment of real-world label noise. Secondly, these efforts are often of large scales, which may result in unfair comparisons of robust methods within reasonable and accessible computation power. To better understand real-world label noise, it is important to establish controllable and moderate-sized real-world noisy datasets with both ground-truth and noisy labels. This work presents two new benchmark datasets, which we name as CIFAR-10N, CIFAR-100N, equipping the training datasets of CIFAR-10 and CIFAR-100 with human-annotated real-world noisy labels that we collect from Amazon Mechanical Turk. We quantitatively and qualitatively show that real-world noisy labels follow an instance-dependent pattern rather than the classically assumed and adopted ones (e.g., class-dependent label noise). We then initiate an effort to benchmark a subset of the existing solutions using CIFAR-10N and CIFAR-100N. We further proceed to study the memorization of correct and wrong predictions, which further illustrates the difference between human noise and class-dependent synthetic noise. We show indeed the real-world noise patterns impose new and outstanding challenges as compared to synthetic label noise. These observations require us to rethink the treatment of noisy labels, and we hope the availability of these two datasets would facilitate the development and evaluation of future learning with noisy label solutions. The corresponding datasets and the leaderboard are publicly available at http://noisylabels.com. 
    more » « less
  2. Noisy labels are inevitable in large real-world datasets. In this work, we explore an area understudied by previous works --- how the network's architecture impacts its robustness to noisy labels. We provide a formal framework connecting the robustness of a network to the alignments between its architecture and target/noise functions. Our framework measures a network's robustness via the predictive power in its representations --- the test performance of a linear model trained on the learned representations using a small set of clean labels. We hypothesize that a network is more robust to noisy labels if its architecture is more aligned with the target function than the noise. To support our hypothesis, we provide both theoretical and empirical evidence across various neural network architectures and different domains. We also find that when the network is well-aligned with the target function, its predictive power in representations could improve upon state-of-the-art (SOTA) noisy-label-training methods in terms of test accuracy and even outperform sophisticated methods that use clean labels. 
    more » « less
  3. Federated learning (FL) is a learning paradigm that allows the central server to learn from different data sources while keeping the data private locally. Without controlling and monitoring the local data collection process, the locally available training labels are likely noisy, i.e., the collected training labels differ from the unobservable ground truth. Additionally, in heterogenous FL, each local client may only have access to a subset of label space (referred to as openset label learning), meanwhile without overlapping with others. In this work, we study the challenge of FL with local openset noisy labels. We observe that many existing solutions in the noisy label literature, e.g., loss correction, are ineffective during local training due to overfitting to noisy labels and being not generalizable to openset labels. For the methods in FL, different estimated metrics are shared. To address the problems, we design a label communication mechanism that shares "contrastive labels" randomly selected from clients with the server. The privacy of the shared contrastive labels is protected by label differential privacy (DP). Both the DP guarantee and the effectiveness of our approach are theoretically guaranteed. Compared with several baseline methods, our solution shows its efficiency in several public benchmarks and real-world datasets under different noise ratios and noise models. 
    more » « less
  4. null (Ed.)
    Human-annotated labels are often prone to noise, and the presence of such noise will degrade the performance of the resulting deep neural network (DNN) models. Much of the literature (with several recent exceptions) of learning with noisy labels focuses on the case when the label noise is independent of features. Practically, annotations errors tend to be instance-dependent and often depend on the difficulty levels of recognizing a certain task. Applying existing results from instance-independent settings would require a significant amount of estimation of noise rates. Therefore, providing theoretically rigorous solutions for learning with instance-dependent label noise remains a challenge. In this paper, we propose CORES (COnfidence REgularized Sample Sieve), which progressively sieves out corrupted examples. The implementation of CORES does not require specifying noise rates and yet we are able to provide theoretical guarantees of CORES in filtering out the corrupted examples. This high-quality sample sieve allows us to treat clean examples and the corrupted ones separately in training a DNN solution, and such a separation is shown to be advantageous in the instance-dependent noise setting. We demonstrate the performance of CORES^2 on CIFAR10 and CIFAR100 datasets with synthetic instance-dependent label noise and Clothing1M with real-world human noise. As of independent interests, our sample sieve provides a generic machinery for anatomizing noisy datasets and provides a flexible interface for various robust training techniques to further improve the performance. Code is available at https://github.com/UCSC-REAL/cores. 
    more » « less
  5. Noisy training labels can hurt model performance. Most approaches that aim to address label noise assume label noise is independent from the input features. In practice, however, label noise is often feature or \textit{instance-dependent}, and therefore biased (i.e., some instances are more likely to be mislabeled than others). E.g., in clinical care, female patients are more likely to be under-diagnosed for cardiovascular disease compared to male patients. Approaches that ignore this dependence can produce models with poor discriminative performance, and in many healthcare settings, can exacerbate issues around health disparities. In light of these limitations, we propose a two-stage approach to learn in the presence instance-dependent label noise. Our approach utilizes \textit{\anchor points}, a small subset of data for which we know the observed and ground truth labels. On several tasks, our approach leads to consistent improvements over the state-of-the-art in discriminative performance (AUROC) while mitigating bias (area under the equalized odds curve, AUEOC). For example, when predicting acute respiratory failure onset on the MIMIC-III dataset, our approach achieves a harmonic mean (AUROC and AUEOC) of 0.84 (SD [standard deviation] 0.01) while that of the next best baseline is 0.81 (SD 0.01). Overall, our approach improves accuracy while mitigating potential bias compared to existing approaches in the presence of instance-dependent label noise. 
    more » « less