Label differential privacy is a relaxation of differential privacy for machine learning scenarios where the labels are the only sensitive information that needs to be protected in the training data. For example, imagine a survey from a participant in a university class about their vaccination status. Some attributes of the students are publicly available but their vaccination status is sensitive information and must remain private. Now if we want to train a model that predicts whether a student has received vaccination using only their public information, we can use label-DP. Recent works on label-DP use different ways of adding noise to the labels in order to obtain label-DP models. In this work, we present novel techniques for training models with label-DP guarantees by leveraging unsupervised learning and semi-supervised learning, enabling us to inject less noise while obtaining the same privacy, therefore achieving a better utility-privacy trade-off. We first introduce a framework that starts with an unsupervised classifier f0 and dataset D with noisy label set Y , reduces the noise in Y using f0 , and then trains a new model f using the less noisy dataset. Our noise reduction strategy uses the model f0 to remove the noisy labels that are incorrect with high probability. Then we use semi-supervised learning to train a model using the remaining labels. We instantiate this framework with multiple ways of obtaining the noisy labels and also the base classifier. As an alternative way to reduce the noise, we explore the effect of using unsupervised learning: we only add noise to a majority voting step for associating the learned clusters with a cluster label (as opposed to adding noise to individual labels); the reduced sensitivity enables us to add less noise. Our experiments show that these techniques can significantly outperform the prior works on label-DP.
more »
« less
This content will become publicly available on September 29, 2025
Federated Learning with Local Openset Noisy Labels
Federated learning (FL) is a learning paradigm that allows the central server to learn from different data sources while keeping the data private locally. Without controlling and monitoring the local data collection process, the locally available training labels are likely noisy, i.e., the collected training labels differ from the unobservable ground truth. Additionally, in heterogenous FL, each local client may only have access to a subset of label space (referred to as openset label learning), meanwhile without overlapping with others. In this work, we study the challenge of FL with local openset noisy labels. We observe that many existing solutions in the noisy label literature, e.g., loss correction, are ineffective during local training due to overfitting to noisy labels and being not generalizable to openset labels. For the methods in FL, different estimated metrics are shared. To address the problems, we design a label communication mechanism that shares "contrastive labels" randomly selected from clients with the server. The privacy of the shared contrastive labels is protected by label differential privacy (DP). Both the DP guarantee and the effectiveness of our approach are theoretically guaranteed. Compared with several baseline methods, our solution shows its efficiency in several public benchmarks and real-world datasets under different noise ratios and noise models.
more »
« less
- PAR ID:
- 10546389
- Publisher / Repository:
- European Conference on Computer Vision
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Motivated by the ever-increasing concerns on personal data privacy and the rapidly growing data volume at local clients, federated learning (FL) has emerged as a new machine learning setting. An FL system is comprised of a central parameter server and multiple local clients. It keeps data at local clients and learns a centralized model by sharing the model parameters learned locally. No local data needs to be shared, and privacy can be well protected. Nevertheless, since it is the model instead of the raw data that is shared, the system can be exposed to the poisoning model attacks launched by malicious clients. Furthermore, it is challenging to identify malicious clients since no local client data is available on the server. Besides, membership inference attacks can still be performed by using the uploaded model to estimate the client's local data, leading to privacy disclosure. In this work, we first propose a model update based federated averaging algorithm to defend against Byzantine attacks such as additive noise attacks and sign-flipping attacks. The individual client model initialization method is presented to provide further privacy protections from the membership inference attacks by hiding the individual local machine learning model. When combining these two schemes, privacy and security can be both effectively enhanced. The proposed schemes are proved to converge experimentally under non-lID data distribution when there are no attacks. Under Byzantine attacks, the proposed schemes perform much better than the classical model based FedAvg algorithm.more » « less
-
Recent relation extraction (RE) works have shown encouraging improvements by conducting contrastive learning on silver labels generated by distant supervision before fine-tuning on gold labels. Existing methods typically assume all these silver labels are accurate and treat them equally; however, distant supervision is inevitably noisy–some silver labels are more reliable than others. In this paper, we propose fine-grained contrastive learning (FineCL) for RE, which leverages fine-grained information about which silver labels are and are not noisy to improve the quality of learned relationship representations for RE. We first assess the quality of silver labels via a simple and automatic approach we call “learning order denoising,” where we train a language model to learn these relations and record the order of learned training instances. We show that learning order largely corresponds to label accuracy–early-learned silver labels have, on average, more accurate labels than later-learned silver labels. Then, during pre-training, we increase the weights of accurate labels within a novel contrastive learning objective. Experiments on several RE benchmarks show that FineCL makes consistent and significant performance gains over state-of-the-art methods.more » « less
-
Differentially Private Federated Learning (DP-FL) has garnered attention as a collaborative machine learning approach that ensures formal privacy. Most DP-FL approaches ensure DP at the record-level within each silo for cross-silo FL. However, a single user's data may extend across multiple silos, and the desired user-level DP guarantee for such a setting remains unknown. In this study, we present Uldp-FL, a novel FL framework designed to guarantee user-level DP in cross-silo FL where a single user's data may belong to multiple silos. Our proposed algorithm directly ensures user-level DP through per-user weighted clipping, departing from group-privacy approaches. We provide a theoretical analysis of the algorithm's privacy and utility. Additionally, we improve the utility of the proposed algorithm with an enhanced weighting strategy based on user record distribution and design a novel private protocol that ensures no additional information is revealed to the silos and the server. Experiments on real-world datasets show substantial improvements in our methods in privacy-utility trade-offs under user-level DP compared to baseline methods. To the best of our knowledge, our work is the first FL framework that effectively provides user-level DP in the general cross-silo FL setting.more » « less
-
Deep neural networks are able to memorize noisy labels easily with a softmax cross entropy (CE) loss. Previous studies attempted to address this issue focus on incorporating a noise-robust loss function to the CE loss. However, the memorization issue is alleviated but still remains due to the non-robust CE loss. To address this issue, we focus on learning robust contrastive representations of data on which the classifier is hard to memorize the label noise under the CE loss. We propose a novel contrastive regularization function to learn such representations over noisy data where the label noise does not dominate the representation learning. By theoretically investigating the representations induced by the proposed regularization function, we reveal that the learned representations keep information related to true labels and discard information related to corrupted labels from images. Moreover, our theoretical results also indicate that the learned representations are robust to the label noise. Experiments on benchmark datasets demonstrate that the efficacy of our method.more » « less