This paper reviews the large spectrum of methods for generating robot motion proposed over the 50 years of robotics research culminating in recent developments. It crosses the boundaries of methodologies, typically not surveyed together, from those that operate over explicit models to those that learn implicit ones. The paper discusses the current state-of-the-art as well as properties of varying methodologies, highlighting opportunities for integration.
more »
« less
The State of Robot Motion Generation
This paper reviews the large spectrum of methods for generating robot motion proposed over the 50 years of robotics research culminating in recent developments. It crosses the boundaries of methodologies, typically not surveyed together, from those that operate over explicit models to those that learn implicit ones. The paper discusses the current state-of-the-art as well as properties of varying methodologies, highlighting opportunities for integration.
more »
« less
- Award ID(s):
- 2309866
- PAR ID:
- 10631614
- Publisher / Repository:
- International Symposium of Robotics Research (ISRR)
- Date Published:
- Format(s):
- Medium: X
- Location:
- Long Beach, CA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Practitioners frequently take multiple samples from large language models (LLMs) to explore the distribution of completions induced by a given prompt. While individual samples can give high-quality results for given tasks, collectively there are no guarantees of the distribution over these samples induced by the generating LLM. In this paper, we empirically evaluate LLMs’ capabilities as distribution samplers. We identify core concepts and metrics underlying LLM-based sampling, including different sampling methodologies and prompting strategies. Using a set of controlled domains we evaluate the error and variance of the distributions induced by the LLM. We find that LLMs struggle to induce reasonable distributions over generated elements, suggesting that practitioners should more carefully consider the semantics and methodologies of sampling from LLMs.more » « less
-
Over the last decade, the use of unmanned aerial vehicles (UAVs) for plant phenotyping and field crop monitoring has significantly evolved and expanded. These technologies have been particularly valuable for monitoring crop growth and health and for managing abiotic and biotic stresses such as drought, fertilization deficiencies, disease, and bioaggressors. This paper provides a comprehensive review of the progress in UAV‐based plant phenotyping, with a focus on the current use and application of drone technology to gain information on plant growth, development, adaptation, and yield. We reviewed over 200 research articles and discuss the best tools and methodologies for different research purposes, the challenges that need to be overcome, and the major research gaps that remain. First, the review offers a critical focus on elucidating the distinct characteristics of UAV platforms, highlighting the diverse sensor technologies employed and shedding light on the nuances of UAV data acquisition and processing methodologies. Second, it presents a comprehensive analysis of the multiple applications of UAVs in field phenotyping, underscoring the transformative potential of integrating machine learning techniques for plant analysis. Third, it delves into the realm of machine learning applications for plant phenotyping, emphasizing its role in enhancing data analysis and interpretation. Furthermore, the paper extensively examines the open issues and research challenges within the domain, addressing the complexities and limitations faced during data acquisition, processing, and interpretation. Finally, it outlines the future trends and emerging technologies in the field of UAV‐based plant phenotyping, paving the way for innovative advancements and methodologies.more » « less
-
null (Ed.)This paper presents a retrospective of the benchmark testing methodologies developed and accumulated into the stretch sensor tool kit (SSTK) by the research team during the Closing the Wearable Gap series of studies. The techniques developed to validate stretchable soft robotic sensors (SRS) as a means for collecting human kinetic and kinematic data at the foot-ankle complex and at the wrist are reviewed. Lessons learned from past experiments are addressed, as well as what comprises the current SSTK based on what the researchers learned over the course of multiple studies. Three core components of the SSTK are featured: (a) material testing tools, (b) data analysis software, and (c) data collection devices. Results collected indicate that the stretch sensors are a viable means for predicting kinematic data based on the most recent gait analysis study conducted by the researchers (average root mean squared error or RMSE = 3.63°). With the aid of SSTK defined in this study summary and shared with the academic community on GitHub, researchers will be able to undergo more rigorous validation methodologies of SRS validation. A summary of the current state of the SSTK is detailed and includes insight into upcoming experiments that will utilize more sophisticated techniques for fatigue testing and gait analysis, utilizing SRS as the data collection solution.more » « less
-
Research in artificial intelligence, as well as in economics and other related fields, generally proceeds from the premise that each agent has a well-defined identity, well-defined preferences over outcomes, and well-defined beliefs about the world. However, as we design AI systems, we in fact need to specify where the boundaries between one agent and another in the system lie, what objective functions these agents aim to maximize, and to some extent even what belief formation processes they use. The premise of this paper is that as AI is being broadly deployed in the world, we need well-founded theories of, and methodologies and algorithms for, how to design preferences, identities, and beliefs. This paper lays out an approach to address these problems from a rigorous foundation in decision theory, game theory, social choice theory, and the algorithmic and computational aspects of these fields.more » « less
An official website of the United States government

