Abstract Abundances of chemical elements in the interstellar and circumgalactic media of high-redshift galaxies offer important constraints on the nucleosynthesis by early generations of stars. Damped Lyαabsorbers (DLAs) in spectra of high-redshift background quasars are excellent sites for obtaining robust measurements of element abundances in distant galaxies. Past studies of DLAs at redshiftsz> 4 have measured abundances of ≲0.01 solar. Here we report the discovery of a DLA atz= 4.7372 with an exceptionally high degree of chemical enrichment. We estimate the Hicolumn density in this absorber to be log (NH I/cm−2) = 20.48 ± 0.15. Our analysis shows unusually high abundances of carbon and oxygen ([C/H] = 0.88 ± 0.17, [O/H] = 0.71 ± 0.16). Such a high level of enrichment a mere 1.2 Gyr after the Big Bang is surprising because of insufficient time for the required amount of star formation. To our knowledge, this is the first supersolar absorber found atz> 4.5. We find the abundances of Si and Mg to be [Si/H] = and [Mg/H] = , confirming the metal-rich nature of this absorber. By contrast, Fe shows a much lower abundance ([Fe/H] = ). We discuss implications of our results for galactic chemical evolution models. The metallicity of this absorber is higher than that of any other known DLA and is >2 orders of magnitude above predictions of chemical evolution models and theNH I-weighted mean metallicity from previous studies atz> 4.5. The relative abundances (e.g., [O/Fe] = 2.29 ± 0.05, [C/Fe] = 2.46 ± 0.08) are also highly unusual compared to predictions for enrichment by early stars. 
                        more » 
                        « less   
                    This content will become publicly available on August 1, 2026
                            
                            High-pressure reduction of carbon dioxide in reactive liquid mixtures
                        
                    
    
            Density-functional theory based molecular-dynamics simulations were used to investigate high-pressure chemical reactions in liquid mixtures of CO2 with several elements (Si, Mn, and Fe) at high temperatures of 2000–3000 K. Our ab initio simulations indicate that these reactant elements can reduce CO2 to C at high pressures (20 GPa) leading to the formation of C-C chains, with Si by far the most effective carbon-reducing agent. A combined chemical analysis using Bader charge analysis and crystal orbital Hamilton population (COHP) on simulation snapshots shows that significant charge transfer from the reducing element to the C atoms creates instability in the C-O covalent bonds. COHP analysis further shows that Mn/Fe-O and Mn/Fe-C bonding interactions are weaker compared to the Si counterparts. These results further our understanding of the redox chemistry of CO2 at conditions relevant to planetary mantle interiors and demonstrate the effectiveness of high pressure in the reduction of CO2 directly to solid carbon. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2205521
- PAR ID:
- 10631645
- Publisher / Repository:
- APS
- Date Published:
- Journal Name:
- Physical Review B
- Volume:
- 112
- Issue:
- 5
- ISSN:
- 2469-9950
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We present the stellar parameters and chemical abundances of 30 elements for five stars located at large radii (3.5–10.7 times the half-light radius) in the Sextans dwarf spheroidal galaxy. We selected these stars using proper motions, radial velocities, and metallicities, and we confirm them as metal-poor members of Sextans with −3.34 ≤ [Fe/H] ≤ −2.64 using high-resolution optical spectra collected with the Magellan Inamori Kyocera Echelle spectrograph. Four of the five stars exhibit normal abundances of C (−0.34 ≤ [C/Fe] ≤ + 0.36), mild enhancement of theαelements Mg, Si, Ca, and Ti ([α/Fe] = +0.12 ± 0.03), and unremarkable abundances of Na, Al, K, Sc, V, Cr, Mn, Co, Ni, and Zn. We identify three chemical signatures previously unknown among stars in Sextans. One star exhibits large overabundances ([X/Fe] > +1.2) of C, N, O, Na, Mg, Si, and K, and large deficiencies of heavy elements ([Sr/Fe] = −2.37 ± 0.25, [Ba/Fe] = −1.45 ± 0.20, [Eu/Fe] < + 0.05), establishing it as a member of the class of carbon-enhanced metal-poor stars with no enhancement of neutron-capture elements. Three stars exhibit moderate enhancements of Eu (+0.17 ≤ [Eu/Fe] ≤ + 0.70), and the abundance ratios among 12 neutron-capture elements are indicative ofr-process nucleosynthesis. Another star is highly enhanced in Sr relative to heavier elements ([Sr/Ba] = +1.21 ± 0.25). These chemical signatures can all be attributed to massive, low-metallicity stars or their end states. Our results, the first for stars at large radius inSextans, demonstrate that these stars were formed in chemically inhomogeneous regions, such as those found in ultra-faint dwarf galaxies.more » « less
- 
            Light element alloying in iron is required to explain density deficit and seismic wave velocities in Earth’s core. However, the light element composition of the Earth’s core seems hard to constrain as nearly all light element alloying would reduce the density and sound velocity (elastic moduli). The alloying light elements include oxidizing elements like oxygen and sulfur and reducing elements like hydrogen and carbon, yet their chemical effects in the alloy system are less discussed. Moreover, Fe-X-ray Absorption Near Edge Structure (Fe-XANES) fingerprints have been studied for silicate materials with ferrous and ferric ions, while not many X-ray absorption spectroscopy (XAS) studies have focused on iron alloys, especially at high pressures. To investigate the bonding nature of iron alloys in planetary interiors, we presented X-ray absorption spectroscopy of iron–nitrogen and iron–carbon alloys at high pressures up to 50 GPa. Together with existing literature on iron–carbon, –hydrogen alloys, we analyzed their edge positions and found no significant difference in the degree of oxidation among these alloys. Pressure effects on edge positions were also found negligible. Our theoretical simulation of the valence state of iron, alloyed with S, C, O, N, and P also showed nearly unchanged behavior under pressures up to 300 GPa. This finding indicates that the high pressure bonding of iron alloyed with light elements closely resembles bonding at the ambient conditions. We suggest that the chemical properties of light elements constrain which ones can coexist within iron alloys.more » « less
- 
            Abstract The first stars were born from chemically pristine gas. They were likely massive, and thus they rapidly exploded as supernovae, enriching the surrounding gas with the first heavy elements. In the Local Group, the chemical signatures of the first stellar population were identified among low-mass, long-lived, very metal-poor ([Fe/H] < −2) stars, characterized by high abundances of carbon over iron ([C/Fe] > +0.7): the so-called carbon-enhanced metal-poor stars. Conversely, a similar carbon excess caused by first-star pollution was not found in dense neutral gas traced by absorption systems at different cosmic time. Here we present the detection of 14 very metal-poor, optically thick absorbers at redshift z ∼ 3–4. Among these, 3 are carbon-enhanced and reveal an overabundance with respect to Fe of all the analyzed chemical elements (O, Mg, Al, and Si). Their relative abundances show a distribution with respect to [Fe/H] that is in very good agreement with those observed in nearby very metal-poor stars. All the tests we performed support the idea that these C-rich absorbers preserve the chemical yields of the first stars. Our new findings suggest that the first-star signatures can survive in optically thick but relatively diffuse absorbers, which are not sufficiently dense to sustain star formation and hence are not dominated by the chemical products of normal stars.more » « less
- 
            Seismic observations suggest that the uppermost region of Earth’s liquid outer core is buoyant, with slower velocities than the bulk outer core. One possible mechanism for the formation of a stably stratified layer is immiscibility in molten iron alloy systems, which has yet to be demonstrated at core pressures. We find immisci- bility between liquid Fe-Si and Fe-Si-O persisting to at least 140 GPa through a combination of laser-heated diamond-anvil cell experiments and first-principles molecular dynamics simulations. High-pressure immiscibility in the Fe-Si-O system may explain a stratified layer atop the outer core, complicate differentiation and evolution of the deep Earth, and affect the structure and intensity of Earth’s magnetic field. Our results support silicon and oxy- gen as coexisting light elements in the core and suggest that SiO2 does not crystallize out of molten Fe-Si-O at the core-mantle boundary.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
