Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract By summarizing the constraint-based development of orbital-free free-energy density functional approximations, we provide a perspective on progress over the last 15 years, the limitations of existing functionals, and the challenges awaiting resolution. We outline the chronology of the development of non-interacting and exchange-correlation free-energy orbital-free functionals and summarize the theoretical basis of existing local density approximation (LDA), second-order approximation, generalized gradient approximation (GGA), and meta-GGAs. We discuss limitations and challenges such as problems with thermodynamic derivatives, free-energy nonadditivity and the closely related issue of all-electron versus valence-only local pseudo-potential performance.more » « less
- 
            Density-functional theory based molecular-dynamics simulations were used to investigate high-pressure chemical reactions in liquid mixtures of CO2 with several elements (Si, Mn, and Fe) at high temperatures of 2000–3000 K. Our ab initio simulations indicate that these reactant elements can reduce CO2 to C at high pressures (20 GPa) leading to the formation of C-C chains, with Si by far the most effective carbon-reducing agent. A combined chemical analysis using Bader charge analysis and crystal orbital Hamilton population (COHP) on simulation snapshots shows that significant charge transfer from the reducing element to the C atoms creates instability in the C-O covalent bonds. COHP analysis further shows that Mn/Fe-O and Mn/Fe-C bonding interactions are weaker compared to the Si counterparts. These results further our understanding of the redox chemistry of CO2 at conditions relevant to planetary mantle interiors and demonstrate the effectiveness of high pressure in the reduction of CO2 directly to solid carbon.more » « lessFree, publicly-accessible full text available August 1, 2026
- 
            X-ray spectroscopy has long been a powerful diagnostic tool for hot, dilute plasmas, providing insights into plasma conditions by measuring line shifts and broadenings of atomic transitions. The technique critically depends on the accuracy of atomic physics models used to interpret spectroscopic measurements for inferring plasma properties such as free-electron density and temperature. Over the past decades, the atomic and plasma physics communities have developed robust atomic physics models to account for various processes in hot, dilute classical plasmas. While these models have been successful in that regime, their applicability becomes uncertain when interpreting x-ray spectroscopy experiments of above-solid-density plasmas. Given that finite-temperature density-functional theory (DFT) offers a more accurate description of dense plasma environments, we present the development of a DFT-based multi-band kinetic model, VERITAS, designed to improve the interpretation of x-ray spectroscopic measurements in high-density plasmas produced by laser-driven spherical implosions. This work details the VERITAS model and its application to both time-integrated and time-resolved x-ray spectra from implosion experiments on OMEGA. The advantages and limitations of the VERITAS model will also be discussed, along with potential directions for advancing x-ray spectroscopy of dense and superdense plasmas.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            Accurate knowledge of the properties of hydrogen at high compression is crucial for astrophysics (e.g., planetary and stellar interiors, brown dwarfs, atmosphere of compact stars) and laboratory experiments, including inertial confinement fusion. There exists experimental data for the equation of state, conductivity, and Thomson scattering spectra. However, the analysis of the measurements at extreme pressures and temperatures typically involves additional model assumptions, which makes it difficult to assess the accuracy of the experimental data rigorously. On the other hand, theory and modeling have produced extensive collections of data. They originate from a very large variety of models and simulations including path integral Monte Carlo (PIMC) simulations, density functional theory (DFT), chemical models, machine-learned models, and combinations thereof. At the same time, each of these methods has fundamental limitations (fermion sign problem in PIMC, approximate exchange–correlation functionals of DFT, inconsistent interaction energy contributions in chemical models, etc.), so for some parameter ranges accurate predictions are difficult. Recently, a number of breakthroughs in first principles PIMC as well as in DFT simulations were achieved which are discussed in this review. Here we use these results to benchmark different simulation methods. We present an update of the hydrogen phase diagram at high pressures, the expected phase transitions, and thermodynamic properties including the equation of state and momentum distribution. Furthermore, we discuss available dynamic results for warm dense hydrogen, including the conductivity, dynamic structure factor, plasmon dispersion, imaginary-time structure, and density response functions. We conclude by outlining strategies to combine different simulations to achieve accurate theoretical predictions that are based on first principles.more » « less
- 
            In this work, we introduce the concept of a tunable noninteracting free-energy density functional and present two examples realized: (i) via a simple one-parameter convex combination of two existing functionals and (ii) via the construction of a generalized gradient approximation (GGA) enhancement factor that contains one free parameter and is designed to satisfy a set of incorporated constraints. Functional (i), constructed as a combination of the local Thomas–Fermi and a pseudopotential-adapted GGA for the noninteracting free-energy, has already demonstrated its practical usability for establishing the high temperature end of the equation of state of deuterium [Phys. Rev. B 104, 144104 (2021)] and CHON resin [Phys. Rev. E 106, 045207 (2022)] for inertial confinement fusion applications. Hugoniot calculations for liquid deuterium are given as another example of how the application of computationally efficient orbital-free density functional theory (OF-DFT) can be utilized with the employment of the developed functionals. Once the functionals have been tuned such that the OF-DFT Hugoniot calculation matches the Kohn–Sham solution at some low-temperature point, agreement with the reference Kohn–Sham results for the rest of the high temperature Hugoniot path is very good with relative errors for compression and pressure on the order of 2% or less.more » « less
- 
            Ab initio molecular dynamics (AIMD) simulations have become an important tool used in the construction of equations of state (EOS) tables for warm dense matter. Due to computational costs, only a limited number of system state conditions can be simulated, and the remaining EOS surface must be interpolated for use in radiation-hydrodynamic simulations of experiments. In this work, we develop a thermodynamically consistent EOS model that utilizes a physics-informed machine learning approach to implicitly learn the underlying Helmholtz free-energy from AIMD generated energies and pressures. The model, referred to as PIML-EOS, was trained and tested on warm dense polystyrene producing a fit within a 1% relative error for both energy and pressure and is shown to satisfy both the Maxwell and Gibbs–Duhem relations. In addition, we provide a path toward obtaining thermodynamic quantities, such as the total entropy and chemical potential (containing both ionic and electronic contributions), which are not available from current AIMD simulations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
