skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inference on spatiotemporal dynamics for coupled biological populations
Mathematical models in ecology and epidemiology must be consistent with observed data in order to generate reliable knowledge and evidence-based policy. Metapopulation systems, which consist of a network of connected sub-populations, pose technical challenges in statistical inference owing to nonlinear, stochastic interactions. Numerical difficulties encountered in conducting inference can obstruct the core scientific questions concerning the link between the mathematical models and the data. Recently, an algorithm has been proposed that enables computationally tractable likelihood-based inference for high-dimensional partially observed stochastic dynamic models of metapopulation systems. We use this algorithm to build a statistically principled data analysis workflow for metapopulation systems. Via a case study of COVID-19, we show how this workflow addresses the limitations of previous approaches. The COVID-19 pandemic provides a situation where mathematical models and their policy implications are widely visible, and we revisit an influential metapopulation model used to inform basic epidemiological understanding early in the pandemic. Our methods support self-critical data analysis, enabling us to identify and address model weaknesses, leading to a new model with substantially improved statistical fit and parameter identifiability. Our results suggest that the lockdown initiated on 23 January 2020 in China was more effective than previously thought.  more » « less
Award ID(s):
2414688
PAR ID:
10631697
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
The Royal Society
Date Published:
Journal Name:
Journal of The Royal Society Interface
Volume:
21
Issue:
216
ISSN:
1742-5662
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Understanding the dynamics of the spread of COVID-19 between connected communities is fundamental in planning appropriate mitigation measures. To that end, we propose and analyze a novel metapopulation network model, particularly suitable for modeling commuter traffic patterns, that takes into account the connectivity between a heterogeneous set of communities, each with its own infection dynamics. In the novel metapopulation model that we propose here, transport schemes developed in optimal transport theory provide an efficient and easily implementable way of describing the temporary population redistribution due to traffic, such as the daily commuter traffic between work and residence. Locally, infection dynamics in individual communities are described in terms of a susceptible-exposed-infected-recovered (SEIR) compartment model, modified to account for the specific features of COVID-19, most notably its spread by asymptomatic and presymptomatic infected individuals. The mathematical foundation of our metapopulation network model is akin to a transport scheme between two population distributions, namely the residential distribution and the workplace distribution, whose interface can be inferred from commuter mobility data made available by the US Census Bureau. We use the proposed metapopulation model to test the dynamics of the spread of COVID-19 on two networks, a smaller one comprising 7 counties in the Greater Cleveland area in Ohio, and a larger one consisting of 74 counties in the Pittsburgh–Cleveland–Detroit corridor following the Lake Erie’s American coastline. The model simulations indicate that densely populated regions effectively act as amplifiers of the infection for the surrounding, less densely populated areas, in agreement with the pattern of infections observed in the course of the COVID-19 pandemic. Computed examples show that the model can be used also to test different mitigation strategies, including one based on state-level travel restrictions, another on county level triggered social distancing, as well as a combination of the two. 
    more » « less
  2. null (Ed.)
    Mathematical models are widely recognized as an important tool for analyzing and understanding the dynamics of infectious disease outbreaks, predict their future trends, and evaluate public health intervention measures for disease control and elimination. We propose a novel stochastic metapopulation state-space model for COVID-19 transmission, which is based on a discrete-time spatio-temporal susceptible, exposed, infected, recovered, and deceased (SEIRD) model. The proposed framework allows the hidden SEIRD states and unknown transmission parameters to be estimated from noisy, incomplete time series of reported epidemiological data, by application of unscented Kalman filtering (UKF), maximum-likelihood adaptive filtering, and metaheuristic optimization. Experiments using both synthetic data and real data from the Fall 2020 COVID-19 wave in the state of Texas demonstrate the effectiveness of the proposed model. 
    more » « less
  3. COVID-19 had an unprecedented impact on scientific collaboration. The pandemic and its broad response from the scientific community has forged new relationships among domain experts, mathematical modelers, and scientific computing specialists. Computationally, however, it also revealed critical gaps in the ability of researchers to exploit advanced computing systems. These challenging areas include gaining access to scalable computing systems, porting models and workflows to new systems, sharing data of varying sizes, and producing results that can be reproduced and validated by others. Informed by our team’s work in supporting public health decision makers during the COVID-19 pandemic and by the identified capability gaps in applying high-performance computing (HPC) to the modeling of complex social systems, we present the goals, requirements, and initial implementation of OSPREY, an open science platform for robust epidemic analysis. The prototype implementation demonstrates an integrated, algorithm-driven HPC workflow architecture, coordinating tasks across federated HPC resources, with robust, secure and automated access to each of the resources. We demonstrate scalable and fault-tolerant task execution, an asynchronous API to support fast time-to-solution algorithms, an inclusive, multi-language approach, and efficient wide-area data management. The example OSPREY code is made available on a public repository. 
    more » « less
  4. The COVID-19 pandemic is a global threat presenting health, economic, and social challenges that continue to escalate. Metapopulation epidemic modeling studies in the susceptible–exposed–infectious–removed (SEIR) style have played important roles in informing public health policy making to mitigate the spread of COVID-19. These models typically rely on a key assumption on the homogeneity of the population. This assumption certainly cannot be expected to hold true in real situations; various geographic, socioeconomic, and cultural environments affect the behaviors that drive the spread of COVID-19 in different communities. What’s more, variation of intracounty environments creates spatial heterogeneity of transmission in different regions. To address this issue, we develop a human mobility flow-augmented stochastic SEIR-style epidemic modeling framework with the ability to distinguish different regions and their corresponding behaviors. This modeling framework is then combined with data assimilation and machine learning techniques to reconstruct the historical growth trajectories of COVID-19 confirmed cases in two counties in Wisconsin. The associations between the spread of COVID-19 and business foot traffic, race and ethnicity, and age structure are then investigated. The results reveal that, in a college town (Dane County), the most important heterogeneity is age structure, while, in a large city area (Milwaukee County), racial and ethnic heterogeneity becomes more apparent. Scenario studies further indicate a strong response of the spread rate to various reopening policies, which suggests that policy makers may need to take these heterogeneities into account very carefully when designing policies for mitigating the ongoing spread of COVID-19 and reopening. 
    more » « less
  5. This paper leverages natural language processing, spatial analysis, and statistical analysis to examine the relationship between restaurants’ safety violations and COVID-19 cases. We used location-based consumers’ complaints data during the early stage of business reopening in Florida, USA. First, statistical analysis was conducted to examine the correlation between restaurants’ safety violations and COVID-19 transmission. Second, a neural network-based deep learning model was developed to perform topic modeling based on consumers’ complaints. Third, spatial modeling of the complaints’ geographic distributions was performed to identify the hotspots of consumers’ complaints and COVID-19 cases. The results reveal a positive relationship between consumers’ complaints about restaurants’ safety violations and COVID-19 cases. In particular, consumers’ complaints about personal protection measures had the highest correlation with COVID-19 cases, followed by environmental safety measures. Our analytical methods and findings shed light on customers’ behavioral shifts and hospitality businesses’ adaptive practices during a pandemic. 
    more » « less