skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 5, 2026

Title: Convergence Rates for Softmax Gating Mixture of Experts
Mixture of experts (MoE) has recently emerged as an effective framework to advance the efficiency and scalability of machine learning models by softly dividing complex tasks among multiple specialized sub-models termed experts. Central to the success of MoE is an adaptive softmax gating mechanism which takes responsibility for determining the relevance of each expert to a given input and then dynamically assigning experts their respective weights. Despite its widespread use in practice, a comprehensive study on the effects of the softmax gating on the MoE has been lacking in the literature. To bridge this gap in this paper, we perform a convergence analysis of parameter estimation and expert estimation under the MoE equipped with the standard softmax gating or its variants, including a dense-to-sparse gating and a hierarchical softmax gating, respectively. Furthermore, our theories also provide useful insights into the design of sample-efficient expert structures. In particular, we demonstrate that it requires polynomially many data points to estimate experts satisfying our proposed strong identifiability condition, namely a commonly used two-layer feed-forward network. In stark contrast, estimating linear experts, which violate the strong identifiability condition, necessitates exponentially many data points as a result of intrinsic parameter interactions expressed in the language of partial differential equations. All the theoretical results are substantiated with a rigorous guarantee.  more » « less
Award ID(s):
2505865
PAR ID:
10631818
Author(s) / Creator(s):
; ;
Publisher / Repository:
https://doi.org/10.48550/arXiv.2503.03213
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mixture of experts (MoE) methods are a key component in most large language model architectures, including the recent series of DeepSeek models. Compared to other MoE implemen- tations, DeepSeekMoE stands out because of two unique features: the deployment of a shared expert strategy and of the normalized sigmoid gating mechanism. Despite the prominent role of DeepSeekMoE in the success of the DeepSeek series of models, there have been only a few attempts to justify theoretically the value of the shared expert strategy, while its normalized sigmoid gating has remained unexplored. To bridge this gap, we undertake a comprehensive theoretical study of these two features of DeepSeekMoE from a statistical perspective. We perform a convergence analysis of the expert estimation task to highlight the gains in sample efficiency for both the shared expert strategy and the normalized sigmoid gating, offering useful insights into the design of expert and gating structures. To verify empirically our theoretical findings, we carry out several experiments on both synthetic data and real-world datasets for (vision) language modeling tasks. Finally, we conduct an extensive empirical analysis of the router behaviors, ranging from router saturation, router change rate, to expert utilization. 
    more » « less
  2. Gating is a key feature in modern neural networks including LSTMs, GRUs and sparselygated deep neural networks. The backbone of such gated networks is a mixture-of-experts layer, where several experts make regression decisions and gating controls how to weigh the decisions in an input-dependent manner. Despite having such a prominent role in both modern and classical machine learning, very little is understood about parameter recovery of mixture-of-experts since gradient descent and EM algorithms are known to be stuck in local optima in such models. In this paper, we perform a careful analysis of the optimization landscape and show that with appropriately designed loss functions, gradient descent can indeed learn the parameters of a MoE accurately. A key idea underpinning our results is the design of two distinct loss functions, one for recovering the expert parameters and another for recovering the gating parameters. We demonstrate the first sample complexity results for parameter recovery in this model for any algorithm and demonstrate significant performance gains over standard loss functions in numerical experiments 
    more » « less
  3. Mixture-of-Experts (MoE) is a widely popular model for ensemble learning and is a basic building block of highly successful modern neural networks as well as a component in Gated Recurrent Units (GRU) and Attention networks. However, present algorithms for learning MoE, including the EM algorithm and gradient descent, are known to get stuck in local optima. From a theoretical viewpoint, finding an efficient and provably consistent algorithm to learn the parameters remains a long standing open problem for more than two decades. In this paper, we introduce the first algorithm that learns the true parameters of a MoE model for a wide class of non-linearities with global consistency guarantees. While existing algorithms jointly or iteratively estimate the expert parameters and the gating parameters in the MoE, we propose a novel algorithm that breaks the deadlock and can directly estimate the expert parameters by sensing its echo in a carefully designed cross-moment tensor between the inputs and the output. Once the experts are known, the recovery of gating parameters still requires an EM algorithm; however, we show that the EM algorithm for this simplified problem, unlike the joint EM algorithm, converges to the true parameters. We empirically validate our algorithm on both the synthetic and real data sets in a variety of settings, and show superior performance to standard baselines. 
    more » « less
  4. Mixture-of-Experts (MoE) is a widely popular model for ensemble learning and is a basic building block of highly successful modern neural networks as well as a component in Gated Recurrent Units (GRU) and Attention networks. However, present algorithms for learning MoE, including the EM algorithm and gradient descent, are known to get stuck in local optima. From a theoretical viewpoint, finding an efficient and provably consistent algorithm to learn the parameters remains a long standing open problem for more than two decades. In this paper, we introduce the first algorithm that learns the true parameters of a MoE model for a wide class of non-linearities with global consistency guarantees. While existing algorithms jointly or iteratively estimate the expert parameters and the gating parameters in the MoE, we propose a novel algorithm that breaks the deadlock and can directly estimate the expert parameters by sensing its echo in a carefully designed cross-moment tensor between the inputs and the output. Once the experts are known, the recovery of gating parameters still requires an EM algorithm; however, we show that the EM algorithm for this simplified problem, unlike the joint EM algorithm, converges to the true parameters. We empirically validate our algorithm on both the synthetic and real data sets in a variety of settings, and show superior performance to standard baselines. 
    more » « less
  5. Classical Mixtures of Experts (MoE) are Machine Learning models that involve partitioning the input space, with a separate "expert" model trained on each partition. Recently, MoE-based model architectures have become popular as a means to reduce training and inference costs. There, the partitioning function and the experts are both learnt jointly via gradient descent-type methods on the log-likelihood. In this paper we study theoretical guarantees of the Expectation Maximization (EM) algorithm for the training of MoE models. We first rigorously analyze EM for MoE where the conditional distribution of the target and latent variable conditioned on the feature variable belongs to an exponential family of distributions and show its equivalence to projected Mirror Descent with unit step size and a Kullback-Leibler Divergence regularizer. This perspective allows us to derive new convergence results and identify conditions for local linear convergence; In the special case of mixture of 2 linear or logistic experts, we additionally provide guarantees for linear convergence based on the signal-to-noise ratio. Experiments on synthetic and (small-scale) real-world data supports that EM outperforms the gradient descent algorithm both in terms of convergence rate and the achieved accuracy. 
    more » « less