skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 19, 2026

Title: Foundation model for mass spectrometry proteomics
Mass spectrometry is the dominant technology in the field of proteomics, enabling high-throughput analysis of the protein content of complex biological samples. Due to the complexity of the instrumentation and resulting data, sophisticated computational methods are required for the processing and interpretation of acquired mass spectra. Machine learning has shown great promise to improve the analysis of mass spectrometry data, with numerous purpose-built methods for improving specific steps in the data acquisition and analysis pipeline reaching widespread adoption. Here, we propose unifying various spectrum prediction tasks under a single foundation model for mass spectra. To this end, we pre-train a spectrum encoder using de novo sequencing as a pre-training task. We then show that using these pre-trained spectrum representations improves our performance on the four downstream tasks of spectrum quality prediction, chimericity prediction, phosphorylation prediction, and glycosylation status prediction. Finally, we perform multi-task fine-tuning and find that this approach improves the performance on each task individually. Overall, our work demonstrates that a foundation model for tandem mass spectrometry proteomics trained on de novo sequencing learns generalizable representations of spectra, improves performance on downstream tasks where training data is limited, and can ultimately enhance data acquisition and analysis in proteomics experiments.  more » « less
Award ID(s):
2505865
PAR ID:
10631819
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
https://doi.org/10.48550/arXiv.2505.10848
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A fundamental challenge in mass spectrometry-based proteomics is the identification of the peptide that generated each acquired tandem mass spectrum. Approaches that leverage known peptide sequence databases cannot detect unexpected peptides and can be impractical or impossible to apply in some settings. Thus, the ability to assign peptide sequences to tandem mass spectra without prior information—de novo peptide sequencing—is valuable for tasks including antibody sequencing, immunopeptidomics, and metaproteomics. Although many methods have been developed to address this problem, it remains an outstanding challenge in part due to the difficulty of modeling the irregular data structure of tandem mass spectra. Here, we describe Casanovo, a machine learning model that uses a transformer neural network architecture to translate the sequence of peaks in a tandem mass spectrum into the sequence of amino acids that comprise the generating peptide. We train a Casanovo model from 30 million labeled spectra and demonstrate that the model outperforms several state-of-the-art methods on a cross-species benchmark dataset. We also develop a version of Casanovo that is fine-tuned for non-enzymatic peptides. Finally, we demonstrate that Casanovo’s superior performance improves the analysis of immunopeptidomics and metaproteomics experiments and allows us to delve deeper into the dark proteome. 
    more » « less
  2. Abstract De novo peptide sequencing, which does not rely on a comprehensive target sequence database, provides us with a way to identify novel peptides from tandem mass spectra. However, current de novo sequencing algorithms suffer from low accuracy and coverage, which hinders their application in proteomics. In this paper, we presentPepNet, a fully convolutional neural network for high accuracy de novo peptide sequencing. PepNet takes an MS/MS spectrum (represented as a high-dimensional vector) as input, and outputs the optimal peptide sequence along with its confidence score. The PepNet model is trained using a total of 3 million high-energy collisional dissociation MS/MS spectra from multiple human peptide spectral libraries. Evaluation results show that PepNet significantly outperforms current best-performing de novo sequencing algorithms (e.g. PointNovo and DeepNovo) in both peptide-level accuracy and positional-level accuracy. PepNet can sequence a large fraction of spectra that were not identified by database search engines, and thus could be used as a complementary tool to database search engines for peptide identification in proteomics. In addition, PepNet runs around 3x and 7x faster than PointNovo and DeepNovo on GPUs, respectively, thus being more suitable for the analysis of large-scale proteomics data. 
    more » « less
  3. Many applications of machine learning require a model to make accurate predictions on test examples that are distributionally different from training ones, while task-specific labels are scarce during training. An effective approach to this challenge is to pre-train a model on related tasks where data is abundant, and then fine-tune it on a downstream task of interest. While pre-training has been effective in many language and vision domains, it remains an open question how to effectively use pre-training on graph datasets. In this paper, we develop a new strategy and self-supervised methods for pre-training Graph Neural Networks (GNNs). The key to the success of our strategy is to pre-train an expressive GNN at the level of individual nodes as well as entire graphs so that the GNN can learn useful local and global representations simultaneously. We systematically study pre-training on multiple graph classification datasets. We find that naïve strategies, which pre-train GNNs at the level of either entire graphs or individual nodes, give limited improvement and can even lead to negative transfer on many downstream tasks. In contrast, our strategy avoids negative transfer and improves generalization significantly across downstream tasks, leading up to 9.4% absolute improvements in ROC-AUC over non-pre-trained models and achieving state-of-the-art performance for molecular property prediction and protein function prediction. 
    more » « less
  4. ABSTRACT Protein tandem mass spectrometry data are most often interpreted by matching observed mass spectra to a protein database derived from the reference genome of the sample being analyzed. In many application domains, however, a relevant protein database is unavailable or incomplete, and in such settings de novo sequencing is required. Since the introduction of the DeepNovo algorithm in 2017, the field of de novo sequencing has been dominated by deep learning methods, which use large amounts of labeled mass spectrometry data to train multi‐layer neural networks to translate from observed mass spectra to corresponding peptide sequences. Here, we describe these deep learning methods, outline procedures for evaluating their performance, and discuss the challenges in the field, both in terms of methods development and evaluation protocols. 
    more » « less
  5. Satellite imagery is being leveraged for many societally critical tasks across climate, economics, and public health. Yet, because of heterogeneity in landscapes (e.g. how a road looks in different places), models can show disparate performance across geographic areas. Given the important potential of disparities in algorithmic systems used in societal contexts, here we consider the risk of urban-rural disparities in identification of land-cover features. This is via semantic segmentation (a common computer vision task in which image regions are labelled according to what is being shown) which uses pre-trained image representations generated via contrastive self-supervised learning. We propose fair dense representation with contrastive learning (FairDCL) as a method for de-biasing the multi-level latent space of a convolution neural network. The method improves feature identification by removing spurious latent representations which are disparately distributed across urban and rural areas, and is achieved in an unsupervised way by contrastive pre-training. The pre-trained image representation mitigates downstream urban-rural prediction disparities and outperforms state-of-the-art baselines on real-world satellite images. Embedding space evaluation and ablation studies further demonstrate FairDCL’s robustness. As generalizability and robustness in geographic imagery is a nascent topic, our work motivates researchers to consider metrics beyond average accuracy in such applications. 
    more » « less